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Summary

Turhulent wall-bounded complex flows are commonly encountered in engineering practice
and are of considerable interests in a variety of industrial applications. The presence of a wall
significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-
bounded flows become more complicated by the presence of additional body forces (e.g.
centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress
models are developed from a high-Reynolds-number model which assumes turbulence is
homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall
effects in near-wall regions. In this process, wall normals are introduced. Good predictions could
be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the
models are applied in flows with multiple walls.

Many models have been proposed to model turbulent flows. Among them, Reynolds stress
models, in which turbulent stresses are obtained by solving the Reynolds stress transport
equations, have been proved to be the most successful ones. To apply the Reynolds stress models
to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the
resulting models are called near-wall Reynolds stress models. In most of the existing near-wall
models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models
are difficult to implement for turbulent flows with complex geometry and may give inaccurate
predictions due to the ambiguity of wall normals at corners connecting multiple walls.

The objective of this study is to develop a more general and flexible near-wall Reynolds
stress model without using any wall-dependent variable for wall-bounded turbulent flows. With
the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall
Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress
model with wall-independent near-wall corrections. Moreover, only one damping function is used
for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications

diminish away from the walls.
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Various simple and complex turbulent wall-bounded flows are used to validate the NNWRS
model. Model predictions agree reasonably well with available data from experiments, direct
numerical simulation, or large eddy simulation. Complex flow features caused by the centrifugal
force and Coriolis force as in swirling pipe flow, axially rotating pipe flow and channel flow with
spanwise rotation are essentially captured by the model. The model is able to reproduce
complicated flow phenomena induced by complex geometry, such as flow recirculation,
reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow
in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe
flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS
model predicts less degree of turbulent anisotropy in the near-wall region compared with the wall-
dependent near-wall Reynolds stress model (NWRS) developed by So et al.. However, in
complex flows where other effects become more important, the NNWRS model performs almost
as well as the NWRS model, and the advantages of the wall-independent model become more
evident. The comparison of the predictions given by the two models also rectifies the
misconception that the overshooting of skin friction coefficient in backward-facing step flow

prevalent in those near-wall models with wall normals is caused by the use of wall normals.



1  INTRODUCTION

1.1 Background

Turbulence closure modeling to solve the mean-averaged Navier-Stokes equations has been
pursued for nearly a century. In the last several decades, with the great advances in computer
science, numerous turbulence models have been developed to simulate and predict more and more
complex turbulent flows. In most engineering problems, flow fields are bounded by walls. The
presence of a wall affects significantly the turbulence characteristics: it reduces the length scale of
the momentum fluctuations and increases the dissipation rate; it reflects the pressure fluctuation,
thereby inhibiting the transfer of turbulence energy into fluctuations normal to the wall; it enforces
a no-slip boundary condition, thus ensuring that within a wall-adjacent sublayer, however thin,
turbulent stress is negligible and viscous effect on transport processes becomes vitally important
(Launder 1989).

In general, there are two types of turbulence models: eddy-viscosity models and second-
order closure models (Reynolds stress models). In the eddy-viscosity models, the Reynolds stress
tensor is assumed to be the product of an eddy viscosity and the mean strain-rate tensor. In the
second-order closure models, turbulent Reynolds stresses are obtained by solving the Reynolds
stress transport equations and no relation 1s presumed between the Reynolds stresses and the mean
strain rates. As a result, the second-order closure models are more general and can be used to
simulate turbulence anisotropy and the turbulent stress redistribution process in the near-wall
region. Furthermore, other important factors such as streamline curvature, centrifugal and Coriolis
forces could be properly accounted for in the Reynolds stress models, whereas they are rather
difficult to be included in the eddy-viscosity models.

Practically all turbulence closure models invoke the large Reynolds number assumption, thus
allowing the viscous effect to be neglected as a first approximation. Consequently, the high-
Reynolds-number models cannot be applied to the near-wall region where viscous effect is

dominant. To remedy this drawback, wall-functions have been used to bridge the gap between the



wall and the location beyond which the high-Reynolds-number models are applicable. The wall-
functions are derived under the assumptions of equilibrium turbulence and constant shear stress
near a wall, which are less likely to be valid for complex turbulent shear flows. Therefore, many
attempts have been made to develop near-wall second-order closure models.

As a wall is approached, the local Reynolds number decreases and the intensity of the
anisotropy of the turbulence field increases due to the reflection of the fluctuating pressure by the
wall (Kim 1989). This effect is commonly known as wall blocking (wall-reflection or pressure-
echo) effects. Although the influence of the viscous effect and wall blocking effect on the turbulent
motion are very different by nature, these effects have been frequently modeled together in near-
wall turbulence modeling. All the existing near-wall Reynolds-stress models are developed based
on the high-Reynolds-number models. To account for wall effects, in principle, near-wall
modifications for the turbulent diffusion, velocity-pressure-gradient correlation, and dissipation
rate tensor are needed so that these terms have the correct asymptotic behavior near the wall.
Asymptotic analysis shows that the turbulent diffusion term is three orders of magnitude smaller
than the velocity-pressure-gradient correlation and the dissipation rate tensor in the near-wall
region. Therefore, no near-wall modification is actually required for the turbulent diffusion term.
On the other hand, the velocity-pressure-gradient correlation and dissipation rate tensor are order
one quantities in the near-wall region, and near-wall modifications for these terms are necessary
for the models to be applicable in the near-wall region. To ensure that the near-wall modifications
diminish away from the wall, a damping function analogous to that proposed by Van Driest (1956)
is introduced so that the high-Reynolds-number models are recovered in the region far away from
the wall.

The velocity-pressure-gradient correlation and dissipation rate tensor play crucial roles in
near-wall turbulence and represent different physical processes. The velocity-pressure-gradient
correlation is usually partitioned into a pressure-strain part and a pressure diffusion part. Few

models have explicitly considered the pressure diffusion effect (e.g. Lumley 1978).



Pressure diffusion is assumed to be either included into the modeling of the turbulent diffusion
term, or insignificant in near-wall turbulence as it is treated when the Reynolds number is large.
On the other hand, the contribution of the pressure-strain correlation is significant because it
redistributes energy among different turbulent stress components. The pressure-strain correlation
is a linear function of the pressure fluctuation, and according to the structure of the solution to the
Poisson equation for the pressure fluctuation, it consists of a 'return’ term, a 'rapid’ term and a
Stokes term representing the pressure reflection caused by the wall (Mansour et al. 1988). Due to
the difficulty to include the Stokes part in the model if local homogeneous turbulence is assumed,
the Stokes term is neglected in most of the high-Reynolds-number models (e.g. Launder et al.
1975). When these models are extended to the near-wall region, an additional term proposed to
simulate the Stokes term is added back to the pressure-strain correlation (Prud’homme and
Elghobashi 1983; Kebede et al. 1984; Shima 1988; Shih and Mansour 1990; Lai and So 1990).
Another approach is to modify the coefficients of the return and rapid terms to justify the neglect of
the Stokes term (LLaunder and Shima 1989). In some models, the Stokes term is absorbed into
either the return part or the rapid part (Speziale et al. 1991; Launder and Tselepidakis 1993;
Launder and Li 1994). To ensure that the near-wall corrections decay exponentially away from
the wall, a function depending on the wall normal distance is usually introduced, and the resulting
models are no longer coordinate-frame invariant.

The dissipation rate tensor ¢&; in the Reynolds-stress equation is formulated as the
combination of an isotropic solenoidal part and an anisotropic part according to Hanjalic and
Launder (1976). The isotropic part is obtained by solving a transport equation for the dissipation
rate € of the kinetic energy. Hanjalic and Launder (1976) proposed the first €-equation
compatible with their Reynolds-stress model. In spite of its oversimplified form compared with
the exact governing equation for dissipation rate, it performs reasonably well and becomes a
prototype for later modifications. Modifications have been made mainly to reproduce the near-

wall behavior of dissipation rate predicted by direct numerical simulation: a maximum value of €



is expected to occur at the wall. To reproduce such behavior, near-wall corrections are introduced
to the dissipation rate equation and wall dependent variables (wall normals) are used in damping
functions (Shima 1988) or transformed dissipation terms (Lai and So 1990). The anisotropic
correction part is constructed to satisfy the following two requirements: (i) the contraction of the
dissipation rate tensor should be equal to two times the dissipation rate of the kinetic energy, i.e.
Y ¢g; =2¢; (ii) the components of the dissipation rate tensor should satisfy the kinematic
constraints proposed by Launder and Reynolds (1983). Several models have been proposed to
improve the dissipation rate tensor in the near-wall region (e.g. Prud’homme and Elghobashi 1983;
Kebede et al. 1984; So and Yoo 1986; Lai and So 1990). Among them, Lai and So's (1990)
model satisfies the kinematic constraints and contraction requirement with the introduction of the
wall unit vectors. Most recently, Shima (1995) proposed a three-term dissipation rate model. This
model also satisfies both requirements but eliminates all wall normal unit vectors.

In view of the above discussion, it can be concluded that most of the existing near-wall
Reynolds-stress models explicitly invoke wall-dependent variables such as wall normal unit vector
and wall normal distance to account for the viscous and wall effects. The influence of each wall in
this wall-dependent model is also assumed to act independently. For turbulence flows with
complex geometry, which are commonly encountered in most engineering problems, the use of
wall normals at corners connecting multiple walls becomes ambiguous. Therefore, in this
situation, these models are difficult to implement and may introduce inaccuracy in the prediction of
complex turbulent flow field. The present study is aimed to improve the existing near-wall
Reynolds-stress models for complex flows caused by complex geometry, as well as streamline
curvature and additional body forces such as centrifugal and Coriolis forces in flows with swirl

and rotation.

1.2 Present Objectives

The present research is to develop a near-wall Reynolds-stress model for complex turbulent

flows without introducing any wall-dependent variables (wall normals). Several near-wall second-



order closure models have been proposed at Arizona State University (ASU) in the last decade.
They are So and Yoo (1987), Lai and So (1990), So et al. (1991) and So et al. (1994). With the
aid of asymptotic analysis, the near-wall modifications in these models were developed based on
the high-Reynolds-number model of Launder et al. (1975) except that of So et al's (1994), which
was based on the model of Speziale et al. (1991). This latest model (hereafter we will call it
NWRS model) has been validated against various applications ranging from incompressible fully
developed channel flow to high Mach number compressible boundary-layer flow in a wide range
of Reynolds number. Although these models developed by the ASU group are asymptotically
consistent to a certain extent in the near-wall region, all of them are dependent on wall variables in
one way or another. The present study is part of the on-going near-wall second-order closure
model development project. An attempt to develop a near-wall Reynolds-stress model without wall
dependence has been carried out by Launder and Li (1994) with partial success. The wall normals
were removed from the pressure-strain correlation in their Reynolds-stress model, but remain in
the dissipation rate tensor. Therefore, the model developed in this study is expected to be the first
near-wall Reynolds-stress model with no wall dependence. The challenge of near-wall modeling
lies on the lack of thorough understanding of wall effects on turbulence. A near-wall second-order
closure model without wall-dependent variables poses more difficulties because of the limited
number of solvable variables and suitable formulations. Guided by the results of direct numerical
simulation, we will develop an asymptotically correct near-wall model without wall normals in this
study. The new model is a modification of NWRS which can accommodate flow complexities
such as streamline curvature and additional body forces related to fluid rotation. The new model,
designated as NNWRS, is expected to perform as well as the wall-dependent NWRS model in a

wide range of complex flow conditions.
1.3 Report Outline

In Section 2, a new near-wall Reynolds-stress (NNWRS) model without wall normals is

developed based on the pressure-strain model of Speziale et al. (1991). Asymptotic analysis and



results from direct numerical simulation are used to guide the near-wall modifications for the
pressure-strain correlation, dissipation rate tensor, and dissipation rate equation. For comparison,
the formulation for the near-wall Reynolds stress (NWRS) model with wall normals proposed by
So et al. (1994) is also presented, and its predictions will be compared with those given by the
NNWRS model in Sections 3, 4 and 5, together with available data from experiments, direct
numerical simulation and large eddy simulation.

In Section 3, simple internal and external flows with a wide range of Reynolds numbers are
first used to validate the new proposed model. These flows include fully-developed channel/pipe
flow, Couette flow, and boundary-layer flow with zero pressure gradient. In addition to assessing
its performance on the mean and turbulence fields, the model's ability to replicate Reynolds
number effects on the mean flow and second-order statistics is also examined.

In Section 4, the NNWRS model is applied to swirling pipe flow, axially rotating pipe flow,
and a channel flow with spanwise rotation to demonstrate its ability to reproduce complicated flow
phenomena caused by streamline curvature, centrifugal force, and Coriolis force in a wide range of
Reynolds numbers, swirl numbers, and rotation numbers.

In Section 5, two flows with multiple walls, a two-dimensional backward-facing step flow
and a three-dimensional square duct flow, are used to test the model's ability to replicate flow
phenomena resulting from complex geometry, such as flow recirculation, reattachment, and
boundary-layer redevelopment in backward-facing step flow, and the secondary flow induced by
turbulence in square duct flow. The advantages of the NNWRS model for flows with complex
geometry are demonstrated.

Section 6 summarizes the performance of the proposed near-wall Reynolds-stress model

without wall normals and presents the conclusions drawn.



2. NEAR-WALL REYNOLDS-STRESS MODELING

2.1 Mean Flow Equations

The present study considers turbulent flows of a viscous, incompressible fluid. The fluid
motion with the presence of rotation is described by the Navier-Stokes equations, which can be

written in Cartesian form or notation as:
ai.
el @

o, . di; 1 Jp 2%,
+ =———+V

o X p ox; Jx;0x;

- 2equjiZk N (2'2)

where #, is the instantaneous velocity vector, p is the modified pressure including the centrifugal

force potential, €2; is the angular velocity, ey is the permutation tensor, and p and vare the fluid

density and viscosity, respectively. Equations (2-1) and (2-2) express conservation of mass and
momentum per unit mass, respectively.

The N-S equations (1) and (2) are fundamental governing equations and can be applied to
both laminar and turbulent flows. With specified boundary and initial conditions, in principle, (1)
and (2) can be solved numerically. However, for turbulent flows, the resolution of the small scale
turbulent fluctuations requires very fine grids; as a result, direct numerical simulations (DNS) of
turbulent flows at high Reynolds number are extremely difficult, if not impossible. An alternative
approach is to study the mean flow field with the consideration of the influence of turbulence. The
mean flow field can be obtained through time, spatial or ensemble averaging. Time averaging has
been widely used in engineering since stationary turbulent flows are most frequently encountered.
This method is also adopted in this study. By time averaging, the velocity and pressure fields are

decomposed into a mean and a fluctuating part:

w=U+u , p=P+p , (2-3)

where capital letters denote the time-averaged mean quantities and small case symbols represent

the fluctuating quantities.



Substituting (2-3) into (2-1) and (2-2) and taking the time averaging of the resulting

equations, we obtain the governing equations for the mean flow field, or

2,

ox; =0 (24

U, 1P *U, duu;
Lt =———t L — —2e.Q.U, . ]
o, T pox omox, o, UK 2-5)

Note that the effect of turbulence on the mean flow is represented by the Reynolds stress term uu :

(i.e. correlations between different fluctuating velocity components) on the right hand side of (2-
5). Equations (2-4) and (2-5) are called the Reynolds equations for the mean flow field.

To solve the Reynolds equations, one must relate the Reynolds stress term to the mean
velocity to close the equations. In the following section we derive the transport equations for the

Reynolds stresses and for the dissipation rate.

2.2 Time-Averaged Turbulence Transport Equations

The transport equations for the Reynolds stresses and the dissipation rate can be derived from

equations (2-1) and (2-2). Defining a Navier-Stokes operator

_. O . d 1P 3%
N )=—L et B Ealid i
= o N, T a Vane,

+2e,-ijjﬁk s (2'6)

and carrying out the following time averaging

wN@) +u,N@)=0 (2-7)

we obtain the Reynolds-stress transport equations:
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The left-hand side is the convection term and the terms on the right-hand side of (2-8) are viscous
diffusion, turbulent diffusion, production due to mean velocity strain, production due to rotation,
pressure-strain correlation, pressure diffusion and viscous dissipation. Similarly, the equation for

the dissipation rate &, defined as
g=v—t—+ | (2-9a)

can be derived from

9 0
8xj- ij

2v [Nwp]=0 (2-9b)

where N(u;)is the Navier-Stokes operator defined in (2-6) with &; — u;, p —> p. After tedious

algebraic manipulation, the following equation for € is obtained

U 88 _ 3 v 88 + a —vu 81/!1' aul- _zvaui au_’ &U[
“ox, Ox\ ox,) ox\ X ox, ox, I, Iy, O,
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By 2 Y. S St ) i i _9 i i k
v ox; dx; ox; {uk ij}o"xkaxj U&xk 0%,y OX,p
L0 [ dp u; 2p? u, O | (2-10)
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The terms on the right-hand side of (2-10) are generally regarded as viscous diffusion, turbulent
diffusion, mixed production, production by mean velocity gradient, gradient production,
turbulence production, pressure diffusion and turbulent destruction of the dissipation.

To facilitate the discussions on each term in the Reynolds-stress and dissipation rate transport
equations, we recast (2-8) and (2-10) in the following symbolic forms:

Cj=DJ+D] +P;+R;+Tl;—¢; (2-11)
C.=DY+DI+P +P:+P}+P}+DF -y | (2-12)

respectively, where each symbol represents each position-corresponding term on the right-hand

side of the respective full equations. Note that in (2-11) the turbulent diffusion term is



T _ 8Llil/ljuk
iy axk (2‘138.)
the velocity-pressure-gradient correlation HZ- consists of two parts:
- 4
I =11; + Dy (2-13b)
where
Ju;, Ou;
. =pl —+—L]| , .
i p[axj axi ] (2 13C)
D =2 (05, + pi0)
V= o POy + puioy | (2-13d)
and the dissipation rate tensor is written as
Ju; ou;
g, =2v—+—L . 2-
v x; Ix; (2-13¢)
All the right-hand side terms in (2-12) except
d Je
Dl =—|v=—1| , 2-14
£ = ox, { axkj (219

need modeling if the Reynolds equations for the mean flow field are to be closed.

2.3 High-Reynolds-Number Modeling

In this section, we discuss how the turbulent diffusion D} velocity-pressure-gradient

ij o
correlation I'IB and dissipation rate tensor €;; in (2-11) are modeled under the assumption of high
Reynolds number (the resulting models are called the high-Reynolds-number models). For high
Reynolds number flows, the viscous effect can be neglected. Irrespective of the analytical
arguments employed for modeling, all known high-Reynolds-number models use the Reynolds
stress gradients to express the turbulent diffusion term (some models also employ the gradient of
the turbulence scale or the gradient of the scale-supplying variable, such as the dissipation rate €).

Five formulations have been proposed for the turbulent diffusion term and they are given by Daly

10



and Harlow (1970), Shir (1973), Hanjalic and Launder (1972), Mellor and Herring (1973) and
Lumley (1978). The invariant form of turbulent diffusion by Hanjalic and Launder (1972)
o[ k(—ouu — oww — duu;
DI = | C, =| upy —1—+uu —*5 + e , R
ij axk{ Se( iy Jx, j*4 o, Ul ox, (2-15)

is adopted for the present model development, where & =1/ 2u; is the turbulence kinetic energy

and C; is a constant. This formula is not only tensorily consistent with the exact expression but

also found to perform better in several types of turbulent flows.

Velocity-pressure-gradient correlation H;- is traditionally partitioned into a pressure-strain term
IT;; and a pressure diffusion term Dg (2-13b). The contribution from Dg is usually neglected for
high-Reynolds-number flows or is argued to be included in turbulent diffusion model (2-15). In
either case, the velocity-pressure-gradient term H; is considered to be the same as the pressure-

strain term IT;; in high-Reynolds-number modeling.
For incompressible flows, the pressure fluctuation is governed by the following Poisson

equation

(uiuj —uiuj) , (2-16)

—V2p=—2 U, 8uj _ 92
p axj axi ax,-c?xj

with boundary condition
w_7v

- (2-17)
Fd o

*

where v is the velocity fluctuation in the wall normal direction (y direction). The Poisson
equation and its boundary condition (2-17) are linear with respect to the fluctuating pressure p.
Therefore, its solution can be splitted into three parts, a 'return’ part, a 'rapid’ part and a 'Stokes'

part (Mansour et al. 1988). The return pressure, p;, is defined as the solution of the following

problem
[y 9? —
~Vep =—————(uu; —uu;) 2-18a
0 P axiaxj( 1) l]) ( )

with the boundary condition at the wall given by

11
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2-18b
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The rapid pressure, p,, is defined as the solution to
1 2 8U auj
—Vip =i ) N
P %) 8xj o, (2-19a)
with the boundary condition at the wall given by
Ip,
el o S S (2-19b)
dy
Finally, the Stokes pressure, p,, is defined as the solution to
1
_Vzps =0 (2-20a)
p
with the boundary condition at the walls specified as
dp, I
=—s . (2-20b)
I ¥

This split resolves the question of whether to add the inhomogeneous boundary condition to the
return part of the pressure or to the rapid part. It does not affect the wall effect on the pressure
fluctuations. The pressure-strain term is linear in p (2-13c) and accordingly the Stokes pressure-
strain statistics can be added to either the rapid pressure-strain term or the return pressure-strain
term without affecting the wall effect on the pressure-strain correlation. However, the Stokes
pressure-strain term (representing the wall effect) is neglected in most models due to the
mathematical difficulty and the lack of understanding of the wall effect on turbulent flow field.
Launder et al.'s (1975) pressure-strain correlation (hereafter denoted as the LRR model) has been
widely accepted for most Reynolds-stress models because of its good performance. In the LRR
model, a wall reflection term was introduced to simulate the Stokes pressure-strain term and to
compensate for the stress anisotropy due to the presence of the wall. The inclusion of the wall
reflection term has been regarded as indispensable to simulate the wall effects. However, it causes

a major drawback since this term involves the distance from the wall and is not coordinate frame

12



invariant. On the other hand, the SSG model (Speziale et al. 1991) incorporated the Stokes term
into the return and rapid parts, and no additional wall reflection term is proposed.

The recent trend for pressure-strain correlation modeling is to include additional nonlinear
terms to the conventional linear terms. The inclusion of nonlinear terms brings more flexibility to
satisfy certain kinematic constraints (e.g. realizability). Among the nonlinear models, the SSG
model retains the linear parts in the LRR model, but with some coefficients depending on the
turbulent stress invariants and turbulence production (hence, it is a quasi-linear model). Other
models contain the quadratic and cubic terms in the rapid part and therefore are much more
complicated to use in engineering applications (Choi and Lumley 1984; Shih and Lumley 1985;
Craft and Launder 1991; Launder and Tselepidikis 1993).

With appropriate rearrangement and transformation (Appendix A), the SSG model can be

rewritten in the following form:

* 1
HU = —(CIE + Cl P)bl] + ng(bikbkj - §H5U) + CSk(bjmeikm + b,-mejkm )Qk

2 - 2 - C;
— (P =3 P8y = Bi(Dy = 3Py =20y + Ik, (2-21)

* * o . .
where C; C;, G5, Gy, Cs, a, By and ¥, are constant coefficients, and the expressions for

P, b, 11 P,

i j» D;j and S; are given in Appendix A. By rewriting the SSG model in this form, the

LRR model is readily recovered by setting C; =C, = C; =Cs=0, and the meaning of each

individual term in (2-21) can be easily identified. The first two terms on the right-hand side of (2-

21) (Cl* and C, terms) are the nonlinear return part, the third term (Cs term) is to account for
rotation effect, and the rest ( &;, B; and ¥, terms) are similar to the rapid part in the LRR model.
The SSG model gives better predictions than the LRR model does for flows with streamline
curvature and rotation (Speziale et al. 1992). In view of the above discussion, the SSG model is
selected as the base for the development of near-wall second-order closure models in this study.

In high-Reynolds-number turbulence, the dissipation rate tensor is assumed to be isotropic

and the form proposed by Kolmogorov (1941) is often adopted, which is
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2 _
£y =380 (2-22)

where the isotropic dissipation rate € is obtained by solving the following modeled transport

equation,
de _ d Je 0 k — Je e - 22
U = c ki o r Ep_ & _
k axk axk [U QXk]'f' an ( € ! Uiy ax"]'i' Elfl X CEsz P s (2 23)

and C, C, and C, are constant coefficients, fjand f, are the damping functions.

2.4 Near-Wall Reynolds-Stress Modeling Based on the SSG Model

The presence of a wall affects significantly the turbulence behaviors in many aspects. Near-
wall turbulence modeling is to simulate the wall effects (including viscous and blocking effects) on
turbulent flows. In this section, the high-Reynolds-number models discussed in the previous
section are extended to the near-wall region by incorporating asymptotically correct near-wall terms
to the model of the pressure-strain correlation, the dissipation rate transport equation and the model
of the dissipation rate tensor. The derived near-wall modifications are ensured to vanish away
from the wall through the use of damping functions. Two near-wall Reynolds-stress models will
be presented in this section, one is wall-dependent (hereafter referred to as NWRS), the other is
wall-independent (hereafter referred to as New NWRS or NNWRS). The wall-dependent model
has been reported in So et al.(1994), in which the author is one of the co-authors.

Following Lai and So (1991), we expand the fluctuating velocity components, which satisfy

the no-slip boundary conditions at the wall, into Taylor series in the near-wall region as

u=a1y+a2y2+a3y3+ e (2-24a)
v=by+by?+by + ., (2-24b)
w=c1y+czy2+c3y3+ v (2-24¢)

where u; = (u,v,w), x; =(x,y,z), and the y-axis is taken to be normal to the wall, the x-axis is in
the stream direction and the z-axis is normal to the (x, y)-plane. The coefficients a;, b;, c; are

random functions of time, x, and z, but not y. For incompressible flows, b, =0 is required to

14



satisfy the continuity equation. The near-wall behavior of each term in the Reynolds stress
equation (2-11) can therefore be analyzed by the substitution of (2-24), except the behavior of the
velocity-pressure-gradient term, which can be obtained by rearranging (2-11) as
HZ. =C; - DUT’ - DJ.’ - Py - R; +¢;. Table 2.1 shows the near-wall behavior of each term in (2-
I1). Note that the R;; term has a varying near-wall behavior depending on the orientation of the
rotating axis, but its lowest order is O(y*). Therefore, this term does not contribute to I'IZ- in

Table 2.1, which only shows terms to O(y) explicitly.

From Table 2.1, one can see that ¢ D,}' and I'I:-} are the leading order terms in the near-

i
»

wall region and g; —I1;; is in balance with Dl-]‘-’ up to O(y). To extend the high-Reynolds-number

models to the near-wall region, appropriate expressions for l'I:j and ¢; are required so that they

have the correct asymptotic behavior (Table 2.1) in the near-wall region. Furthermore, according

to Launder and Reynolds (1983), in the vicinity of the wall, the behavior of &;; / uu; has to satisfy

the following kinematic relations

ey /uf =€yl =g by =lk (2-25a)
€12/ iy = £33/ tquy =2€ 1k, (2-25b)
£ /2 =4elk . (2-25¢)

These kinematic constraints are highly anisotropic, and they further indicate the difficulty of near-

wall Reynolds-stress modeling, particularly for the 22 component. Another constraint for E; 18

that its high-Reynolds-number model plus whatever near-wall corrections proposed should

contract to 2€.

A similar analysis carried out for (2-12) reveals that to O(yO), DEV, D[:’ and y are the

leading-order terms near the wall. Traditionally, D? is neglected in the ad hoc modeling of the &-

equation. The argument is that its effect can be accounted for in the model proposed for

Pl + P2+ P} —yin(2-12), ie. the terms C, fiPe/k~C,yf,€% / k in (2-23). This reasoning is

acceptable for high-Reynolds-number flows; but it is too restrictive for near-wall turbulence. The

negligence of D! is tantamount to the neglect of the pressure diffusion effect in the £-equation,

15



which becomes very important in the near-wall region. Since the dissipation rate € influences the

Reynolds stress wu; behavior in the computations through the interactions between Ejj and wu T

the importance of having a consistent near-wall model for the £-equation cannot be over

emphasized. In view of this, near-wall modifications for the €-equation are necessary if proper

near-wall modeling of wu; is to be accomplished.

Like other pressure-strain models invoking the high-Reynolds-number assumption, the SSG
model is not asymptotically correct in the near-wall region. The O(y°) term in the SSG model
comes from the return term (Table 2.2) and is one order of magnitude larger than the exact term,
which should be O(yl) (Table 1.1). Therefore, near-wall corrections are needed for the SSG
model in order to make it applicable in the near-wall region. So are the dissipation rate tensor €
(2-22) and the dissipation rate equation developed for the high-Reynolds-number flows (2-23). In
what follows, two near-wall Reynolds-stress models (NWRS and NNWRS) are presented in a
parallel manner to highlight the difference between them.

2.4.1 NWRS Model With the above guideline, the NWRS model based on the SSG model
was first developed by So et al. (1994). The pressure-strain correlation in the NWRS model can

be written as

= 1
HU = —(Cle + Cl P)bl] + ng(bikbkj - —3‘1_[5,]) + CSk(bjmeikm + bimejkm )Qk
— oy (P;; —12-135-)—/3 (D - 258~ 2 +—Cin”2)ks + £, IV +117. - (2-26)
Iy 3 ij | AN/} 3 ij 14 5 ij w14 i
The last two terms are the near-wall corrections to the high-Reynolds-number SSG model (cf (2-
26) to (2-21)). The I1;; term,
w * ~ 1 * 2 ~ *
I =(Cie + G PYb; - Coe(byby; - SHSU) +a (P - §P5,-j) +27 kS; (2-27)

where o and y*are two new coefficients, is proposed to remove the O(yo) terms in the SSG

model (the C; and C, terms in Table 2.2) and compensate for the insufficient anisotropy as a wall
is approached. This term is multiplied by a damping function fw, to ensure that the near-wall

correction diminishes away from the wall. The H{J’- term, which is given by
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1| 9 duuy o duuy U o
HP = | —_— ik ) v J . 1 d ” N -
i 3{3)% (U ox; ]nkn_] + £ (v o ]nkn,:t+ 3%, [v o jnknlnlnj , (2-28)

where n; = (0, 1, 0) is the wall unit vector, is included to improve the model predictions for the

v, uv and vw Reynolds-stress components in the near-wall region. In the course of validating

the NWRS model, two different expressions for the damping function f,, ;| are needed to predict

correctly different types of flows with a wide range of Reynolds numbers. These expressions are

f = CX[)——(_R_eI jz

w,1 I 200 ’ (2-298.)

f =€X ——( L )3 2-29b
w,l P- 60 ’ ( - )

where Re, =k? /(ve) is the local turbulent Reynolds number and
A=1-(9/ 2)(b,-jb,~j - 2b,-jbjkbk,~) is the anisotropy invariant. The choice of either (2-29a) or (2-
29b) for the damping function depends on the flow Reynolds number and the type of flows
considered. For example, when the model is applied to channel flow with Re, =395, where
Re, =u h/ v is the Reynolds number based on the friction velocity u, and the channel half width
h, (2-29a) gives better results. On the other hand, when Re, is reduced to 180, (2-29b) gives
better predictions. Overall, (2-29a) is suitable for most of the flows considered, except two cases

of very low-Reynolds-number channel and pipe flows. The values of two additional near-wall

constants & and y* in (2-27) are specified to be " =-0.29 and )/* =0.065 to give the best

predictions (compared with the DNS data of Kim et al. 1987 and Kim 1991) of the near-wall

turbulence behavior for fully-developed channel flow at Re, =180 and 395.
A similar approach is used to derive the near-wall correction function { for the €-equation

(2-23). The improved €-equation becomes

e d o€ d k— de £ - €€
= cruuwt|+c, SP-CHp= , 230
Uk axk 3xk (‘U 8xk]+ axk [ y Eukul ax,} £l k €2 k +C ( )

with
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_2 ~
E =~ £ EE
_ _LEP+ M -NZ= ;
4 fw,z( P P kj (2-30a)
E=g-2vk/y" , (2-30b)
- 2
E=e-20(Vk /) | (2-30c)

where f,, ;= exp[—( Re,/ 40)2] is a damping function proposed to influence the decay of { away

from the wall, and L, M, and N are model constants. Subsequent computations show that
L=2.25 M=0.5and N =0.57 should be used. The modified dissipation rates £ and £ are
introduced to ensure that the leading order terms in (2-30) have correct asymptotic behavior near a
wall.

The simple relation between the dissipation rate tensor ¢; and the dissipation rate & for
isotropic turbulence, (2-22), is no longer valid in the near-wall region. Further correction for (2-
22) is required to account for turbulence anisotropy caused by the presence of the wall. Here, the
relation given by Lai and So (1990), which satisfies the constraints (2-25) and contracts correctly

to 2 €, is adopted:
2 £ uiuj' + uiuknknj + ujuknkni + nn -ukulnkn[
_ _ “ J
8[]‘—585;']’(1 fw,1)+fw,lk

e 2-31
1+ 3uuynyn; / 2k ( )

This relation consists of the isotropic part and the anisotropic correction part. The damping
function f,, is used to recover the Kolmogorov isotropic relation (2-22) at large Reynolds
number. The near-wall asymptotic behavior of &; given by (2-31) can be found in Table 2.3,
which shows that (2-31) is only asymptotically correct to O(yo) in the near-wall region. But each
component has the correct leading order asymptotic behavior.

2.4.2 NNWRS Model In the NWRS model presented in the previous section, all the near-
wall corrections invoke wall dependent variables, such as found in (2-28), (2-30) and (2-31). Asa
result, the model is rather difficult to implement and may give incorrect predictions for flows with
complex geometry. In this section, we develop a new near-wall Reynolds-stress (NNWRS) model

with no wall normal dependence.
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The pressure-strain term in the NNWRS model is modeled similarly as that in the NWRS

model:
* = 1
I-I,-j = —(CIE + Cl P)blj + ng(bikbkj - §H5U) + Csk(bjmeikm + bimejkm )Qk
(P2 PE Y~ B(D.— 2 P82 G i W (2-32a)
a]( yo 3 1}) IBI( ij 3 lj) (71+ 2 I )kSij+fw,Intj'

where IT}] is again proposed to remove the incorrect lowest order O(yo)terms in the SSG model
and compensate for the insufficient anisotropy in the near-wall region, which is given by

W * = 1 * 2 ~ *
1} = (Cie+ G )by = Coelbyby = T16)) + o' (Py = S P +277kS; (2-32b)

and the damping function f,  is used to make H,-’}’ diminish in the high-Reynolds-number flow

region. The damping function is proposed to have the following form,

f1= exp[—(Ret/ 150)2] : (2-33)

by arguing that the near-wall modifications are due to the viscous effect and are needed when the
local turbulence Reynolds number Re, is less than 150. This damping function is used for all
types of fiows. The new constants in (2-32) are chosen to be o’ =-0.36 and ¥ =0.072 to give

good agreements with DNS data of fully developed channel flows at Re; =180 and 395 (Kim et

al. 1987; Kim 1991). Note that the wall-dependent near-wall correction term I'I{J’. (2-28) for the

pressure-strain term in the NWRS model is not included in l'IU in the NNWRS model (cf (2-32)

with (2-26)).

In the NWRS model, the modified dissipation rate £ and £ in the €-equation depend on
local normal wall distance y (2-30). To remove the wall dependence in the £-equation requires a
complete re-examination of the derivation of the equation. Most recently, a new dissipation rate
equation without wall dependence has been proposed by So et al. (1997) for two-equation model
to account for wall effects. We re-examined the derivation of this equation thoroughly and decided
to adopt it with an additional anisotropic coefficient in the turbulent diffusion term as the -

equation in the NNWRS model. The final form for the €-equation in the NNWRS model is
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— Je ~ g?
)"’CelkP—CezfeT

de _ d de
= C
Uk axk é’xk (U axkj axk ( itk 9

el kY
+ Ce3v En (2-34)

where f, =1-0.22 exp[—(Re,/ 6)2] and f,, = exp[—(Re,/ 40)2] are the damping functions, and
C, =012, C; =15, Cgp =19 and Cg3 =2.95 are model coefficients.

Finally, the relation for the dissipation rate tensor given by Shima (1995) is adopted in the

NNWRS model, which is

2 w *
61] = 5lj€(l - fw,l )+ fw,lsij + g’j ’ (2-352)
where
w_ €
A (2-33b)

&= (v ) (2-35¢)

. 19 vafuj)_u—,-u?& ok
2| dx, Ix; k ox,  dx

The first term in (2-35a) is the isotropic part which recovers (2-22) when Reynolds number is
large, the second term is the anisotropic correction in the near-wall region, and the last term is an
additional near-wall correction which redistributes the dissipation rate among different Reynolds
stress components. It can be shown that €; given by (2-35) contracts to 2 £ and satisfies kinematic
constraints (2-25) except the 22 component. The near-wall behavior of this dissipation rate tensor
has been analyzed by applying (2-24) and is summarized in Table 2.3 in comparison with the
corresponding components in the NWRS model (2-31). Table 2.3 shows that the asymptotic
behavior of the dissipation rate tensor given by (2-35) matches the exact asymptotic behavior up to
O(yl), whereas the one given by (2-31) in the NWRS model only up to O(yo). The near-wall
variations of different dissipation rate components given by (2-31) and (2-35) are compared with

the DNS data (Kim et al. 1987), and the results are shown in Figs. 2.1a - 2.1d. In these figures,

s,-j'- = veg;; / u‘,t are the non-dimensional dissipation rate components, and y* = yu, / v is the non-
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dimensional wall distance, where u; is the friction velocity . These figures show that for the

normal stresses, uu, vv, ww, the dissipation rate tensor relation in the NNWRS model gives
better agreement with the DNS data than that in the NWRS model, but for the shear stress uv,
both relations give about the same results.

An alternative proposal has been put forward by Cho et al. (1995), where the dissipation rate

tensor was assumed to be given by

2
gij = 55118(1 - fw,1)+fw,l£l?) » (2'368‘)
with
w | Wil gty Upli = Uml; - 5 Epg Uplhg
SU = TE+ ”;( n gnm&j + ”;( i Ejm + A Eim}/|:1+ETT s (2-36[))
. ok dvk
Epn = 2v—i—— Jk (2-36¢)
ox,, ox,

The asymptotic behavior of each component of this dissipation rate tensor and the corresponding
overall behavior of the Reynolds-stress equations is given in Table 2.3 and 2.4 together with the
NWRS and NNWRS models, respectively. According to these tables, this model (2-36) is only
better than the NNWRS model in the 22 component. If (2-36) is used to replaced (2-35) in the
NNWRS model, the resultant calculations yield better predictions in the near-wall region for the
two channel flows considered. However, the results are not as good as those given by the NWRS
model (Figs. 2.1 and 2.2). The improvement shows the importance of the 22 component in wall-
bounded flows, thus the better performance of the NWRS model over the NNWRS model.
Essentially, there is no difference in the overall predictions of the channel flows (Figs 2.2a - 2.2d)

when (2-35) and (2-36) are used. Therefore, the dissipation rate tensor (2-35) is adopted in the

NNWRS model.
2.5 Concluding Remarks
In this section, we have presented two near-wall Reynolds-stress models, NWRS model and

NNWRS model. The first one involves wall-dependent variables and the second one does not.
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These near-wall models are developed from the high-Reynolds-number model by incorporating the
near-wall modifications into the expression for the pressure-strain correlation, into the relation for
the dissipation rate tensor in the Reynolds-stress equations, and into the modeled dissipation rate
equation. Damping functions are used to ensure that the near-wall modifications will not affect the

flow field in the region far away from the wall. The overall behavior of the Reynolds-stress

equation in the near-wall region is determined by Ej— 1) andis presented in Table 2.4 for both

i
NNWRS and NWRS models. It shows that the modeled Reynolds-stress equations in both
models match the exact equation to O(yo). For those Reynolds-stress components (the 11, 33
and 13) that are not correlated with the wall normal direction, they are better predicted by the
NNWRS model than by the NWRS model. In contrast, the NWRS model, with additional near-
wall correction term I'IZ (see (2-28)), gives better prediction for those components (22, 12 and
23) correlated with the wall normal direction. With no wall dependent variable in the model and
only one expression for the damping function used in the pressure-strain formula, the NNWRS
model is more general and flexible for flows with complex geometry than the NWRS model. The
complete set of modeled equations and constants used in both models are given in Appendix B.

The validations of the new developed near-wall Reynolds-stress model for different flow

conditions will be presented in the following sections.
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Table 2.1 Near-wall asymptotic behavior of each term in Reynolds stress transport equation.

i | G | Df D} P; £ I;
o’y | 067 | 2va? +12vagy | 00 | 2va? +8vaayy —4vaayy
+00y%) +0(y?) +0(y%)
21 ot*) | o) 12 vb_22y2 0(y) 8vbly’ _4 Vb_zfyz
+0(y) +0(y") +0(y*)
31 op? | oo™ 2V;15+12vac—‘;y 0(y*) 2v°c?+8v§g;y —4vecyy
+0(y*) +0(y%) +0(y%)
121 oy | 0% 6vaibyy oK) 4vab,y —2vaybyy
+0(y%) +0(y*) +0(y%)
21 ou* | oo™ 6vhycyy 0% 4vhec,y 2vhey
+0(y") +0(y*) +0(y?)
3100 | 06 0*) 2vac

6 V(alCZ + 2518 )y

+0(y%)

+4v(aic, +azc)y

+0(y%)

-2 V(alCz +a,c )y

+0(%)
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Table 2.3 Near-wall asymptotic behavior of each component in the dissipation rate tensor €;; .

i €;j (exact) NWRS NNWRS Cho et al. (1995)

| 2va+svamy | 2val+avaay | 2val +8vagy | 2val+4vaayy
+00°) +00%) +0(%) +00%)

22 8Vb3y’ 8vh}y? 7vbly? 8vbly’
+0(y’) +0(y’) +0(y°) +0(y’)

13 2veZ +8vecyy 2vel +4vecyy 2veZ +8vecyy 2ve2 +4vecyy
+00%) +0(y%) +0(y%) +0(%)

15 4vab,y 4vab,y 4va,b,y 2vaibyy
+0(y*) +0(y*) +0(y*) +0(y?)

- 4vbyc,y 4vbyc,y 4vb,c,y 2vbycyy
+0(y°) +0(y*) +0(y°) +0(y?)

3 2vac, 2vac, 2vac, 2vayc,

+4V(a1c2 + a, ¢ )y

+0(y%)

+2 V(ZITE'; + ac )y

+0(y%)

+4 V(GICZ + Z;C—])y

+0(y?)

+2 V(01C2 + anq )_V

+0(y%)
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Table 2.4 Near-wall asymptotic behavior of &;- H:j (representing the overall behavior of the

Reynolds-stress equation in the near-wall region).

i g — IT;; (exacy) NWRS NNWRS Cho et al. (1995)

| 2vei+12vagy | 2vai+avagy | 2val+Svamy | 2val +4vaay
+0(%) +00%) +00%) +00°)

27 12 vgy2 12 vgy2 7 ngz 8 v—b_gy2
+0(y°) +0(»°) +0(y*) +0(y°)

13 2veZ +12vecyy 2vel +4vecyy 2vel +8vecyy 2veZ +4vec,y
+0(%) +00%) +0(%) +00%)

%) 6vab,y 6vabyy 4vab,y 2vabyy
+0(>*) +0(y%) +0(y°) +0(?)

’3 6Vbycry 6vbycry 4vhyc,y 2vbycyy
+0(y?) +0(y?) +0(y") +0(y?)

13 2vac 2vac, 2vac 2vaq

+6 V(CI]CZ + a»C; )y

+0(y%)

+2v(ayc, +ayc))y
+0(y%)

+4v(aic, +a,c))y
+0(y%)

+2v(a|cy + azcy)y

+0(y?)
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Fig. 2.1 Near-wall behavior of dissipation rate tensor EJ compiled from DNS data for fully

developed channel flow at Re, =180 : (a) &f;, (b) €3, (¢) €33, and (d) &/
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3  Validation Against Simple Wall-Bounded Turbulent Flows

3.1 Introduction

In this section, the newly developed near-wall Reynolds stress (NNWRS) model is verified
by comparing the model predictions with the DNS results and laboratory measurements for fully
developed channel flow, pipe flow, and plane Couette flow, and for zero pressure gradient
boundary layer flow over a flat plate. Further verification of the model predictions for complex
turbulent flows are carried out in the following sections. For comparison, the corresponding
predictions from the NWRS model are also presented in this section. The DNS experiments at
low Reynolds numbers provide valuable data to validate turbulence models, especially in the near-
wall region where measurement inaccuracy often arises. The simple flows considered in this
section can be classified as internal and external flows. Channel flow, pipe flow and Couette flow
are internal flows, whereas flat plate boundary-layer flow is an external flow.

In a fully developed channel flow, the mean velocity is governed by

lf’fzf_(va_U_;j , 3-1)

which shows that the constant pressure gradient balances the gradient of the total shear stress
(including the viscous and turbulent stress), and acts as the driving force of the flow. The mean
flow equation governing fully developed pipe flow is the same as (3-1) but written in cylindrical

coordinate. The momentum equation for a fully developed Couette flow is governed by

ozg[v%—ﬁj , (3-2)

where the pressure gradient is zero, and the flow is driven by the moving wall. Consequently, the
total shear stress in a Couette flow is constant in the entire flow domain. The pressure gradient in a
boundary-layer flow over a flat plate is also zero, and equation (3-2) applies to the near-wall

region. Away from the wall, the inertial force becomes important, and the momentum equation has

the form
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ua—U+v32:i(v?ﬂ-u—vJ 33
x Ty o\ oy ' (3-3)

In wall-bounded flows, two regions can be identified; the inner layer and the outer layer (or
the defect layer). The overlap of these two layers gives arise to the logarithmic layer where the log

law of the wall applies (Fig. 3.1). Thus, the mean velocity in the log layer can be expressed as

Ut=K"'Iny*+B (3-4)
where Ut =U/u,, y" =yu,/v are the non-dimensional mean velocity and wall normal

distance, respectively; K is the von Karman constant, and B is another constant, with K~ 0.4 and
5< B<5.5 depending on the type of flows. It is essential for a turbulence model to predict
correctly the log-law region for both internal and external wall-bounded flows. Very close to the
wall (y* £5) is the viscous sublayer, where viscosity dominates and velocity varies linearly with
the wall normal distance. In the outer layer (or defect layer), far away from the wall, the flow field
is entirely turbulent, and fully developed channel, pipe and Couette flows show little wake
characteristic compared with boundary layer flow with zero pressure gradient.

In addition to the comparisons of the predicted mean and turbulent flow fields with existing
data, the NNWRS model is also tested by examining its ability to reproduce Reynolds number
effects on simple flows. Both the mean and the turbulent flow fields are influenced by the flow
Reynolds number. So et al. (1996) demonstrated that the NWRS model is capable of assessing
Reynolds number effects on internal and external flows. Following So et al. (1996), we shall also

examine the ability of the NNWRS model to replicate Reynolds number effects in simple flows.

The Reynolds number range considered varies from Re, =180 to Re, =8758 for fully-developed
channel/pipe flows and from Rey =1410 to Regy =2420 for flat plate boundary layers, where

Re,=uh/ v, Reg=U,.0/v, h is the half-width of the channel or pipe radius, 6 is the

momentum thickness and U,, is the freestream mean velocity.
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3.2 Fully-Developed Channel/Pipe and Couette Flows

For fully developed channel/pipe and Couette flows, the modeled equations in NNWRS and
NWRS models reduce to ordinary differential equations (see appendix C.1-C.3). Therefore, they
are relatively easy to solve. Here an iterative scheme is used to solve the governing equations with
the following convergence condition,

—J ) < 10_5 , (3_6)

n
J

where (D;? denotes a dependent variable at the jth grid point in the nth iteration. Only the lower half

flow domain is considered in fully developed channel/pipe flows because the flow fields are
symmetric about the centerline. The grid points are clustered close to the wall and stretched out
away from the wall. For Couette flow, the entire flow domain is computed with specified mean
velocity at the moving wall. The grid points are distributed symmetrically about the centerline with
more points near the walls. The number of grid points used in channel/pine flow computations
varies from 180 to 250 depending on the flow Reynolds number, and about twice the number of
grid points are used in Couette flow computations. The first grid point away from the wall is
located at y© = yu, / v =1, where y is the wall distance.

The no-slip boundary conditions are used to specify the mean velocity and turbulent stresses
at a moving (U,, > 0) or stationary (U,, =0) wall,

U=U,, uu=w=ww=uv=0 , (3-7a)

and the following expression,

e, =20(NE 1) (3-7b)

is used to specify the dissipation rate € at the wall. In fully developed channel/pipe flows, the

boundary conditions at the centerline can be given as

2 2 2
oU _ du” _Jv-  dw" _de _— (3-70)

=—=uv=0 |,

R
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due to the symmetry of the flow field (in case of pipe flow, cylindrical polar coordinates are used
and (3-7c) with y* =Re,—r", where r* is the radial coordinate, gives the corresponding
boundary conditions at the centerline of the pipe (rt=0).

3.2.1 Fully-developed channel flows For fully developed channel flow, two DNS cases
studied by Kim et al. (1987) at Re, =180 and Kim (1991) at Re, =395 are used to test the

models. Two damping functions, (2-29a) for Re, =395 and (2-29b) for Re, =180, are required
for the NWRS model to give a reasonable agreement with the DNS results. On the other hand,
only one damping function, (2-33), is used in the NNWRS model for both Re, =180 and 395.

The model predictions of the mean velocity profiles over the half channel width at Re , =180

and 395 are plotted in Figs. 3.2a - 3.2b. Both the NNWRS and NWRS model results agree very
well with the DNS results (Kim et al. 1987; Kim 1991). Near the centerline, the velocity profiles
predicted by the NNWRS model slightly deviate from those given by the DNS data. In the log

layer, the von Karman constant (3-4) is determined with the procedure outlined by So et al.

(1994). The NNWRS (NWRS) model gives K=0.38 (K =0.40) at Re, =180 and K =0.40
(K =0.39)at Re,; =395. Compared to K =0.40 given by the DNS for both cases, the NNWRS
slightly underpredicts the K value at Re, =180, but gives same K value at Re, =395. 1In
contrast, the NWRS model underpredicts the K value at Re, =395, but replicates the same DNS
result at Re, =180. Overall, the mean velocity profiles in fully developed channel flow given by
both models, including the log-law behavior, are in good agreement with the DNS results.

The comparisons between the model predictions for turbulence quantities in fully developed
channel flow at Re, =180 and Re; =395 and the DNS results are presented in Figs. 3.3 - 3.6.
Figs. 3.3a-3.3b show the turbulent kinetic energy profiles over the entire computational domain,
i.e., half the channel width. The agreement between the NWRS model predictions and the DNS
results is very good for both Reynolds numbers. The agreement between the NNWRS model
results and the DNS results is reasonable, although the peak values of k¥ are underpredicted by

the NNWRS model in both cases. Away from the wall, the NNWRS model gives slightly higher
turbulent kinetic energy k™ at Re, =180, but slightly lower k* at Re, =395. Figs. 3.4a-3.4b
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plot the dissipation rate profiles for Re, =180 and Re, =395 in the near-wall region,

respectively. Both models essentially capture the variations of the dissipation rate predicted by
DNS, e.g., a maximum value at the wall, a small plateau in a region close to the wall, and gradual
attenuation away from the wall. The NNWRS and NWRS models overpredict the dissipation rate
in the near-wall region, but agree well with the DNS away from the near-wall region. Figs. 3.5a-
3.5b show the comparison of the predicted turbulent shear stress profiles with the DNS data. The
shear stress uv " appears in the equation for mean flow (3-1), and therefore it is crucial for the
correct prediction of the mean velocity. These figures show that the agreement between model
predictions of the turbulent shear stress and the DNS results is excellent in both cases. Finally,

Figs. 3.6a-3.6b plot the root-mean-square of the turbulent fluctuations (square root of the turbulent

normal stresses) in the streamwise, wall normal and transverse directions, Uy, Vi Wyns»

respectively. Compared to the DNS results, in the near-wall region, both models underpredict

+
urms ?

but overpredict v, . and w,, .. The NWRS model predictions of the turbulent fluctuations
are in better agreement with the DNS data than those from the NNWRS model. Consequently, the
NWRS model predicts more accurately the anisotropy of the near-wall turbulence than the
NNWRS model. Away from the wall, turbulence becomes more isotropic, and both models give
almost the same results.

According to asymptotic expansions (2-24), we have k* / £ =0.5y*2 + O(y*?) in the near-
wall region. To further examine the performance of the models in the near-wall region, we plot
+y*2

model predictions of k* / €* versus y*? in Fig. 3.7 to see if k¥ /(e y=1/2 is true in the

near-wall region. Fig. 3.7 shows that k" / (e*y*?)=1/2 is indeed true in the near-wall region for

both models.

3.2.2 Fully-developed pipe flows Fully developed pipe flow also has a constant pressure
gradient in the streamwise direction. It is marginally more complicated than fully developed
channel flow because of the cylindrical geometry. Four experimental data sets with a large range

of Reynolds number are selected to test the models: they are the measurements of Durst et al.

(1993) with Re, =250, Schildknecht et al. (1979) with Re, =489, and Laufer (1954) with
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Re, =1052 and 8758. In terms of bulk Reynolds number Re =U,,D/ v, it ranges from 7,500 to

500,000 in these four cases. Thus, the Reynolds number considered is quite high compared to
many test cases investigated by other researchers. The number of grid points required for grid
independent results are found be 108. In the NWRS model, damping function (2-29b) is used for
the lowest Reynolds number case Re; =250, and (2-29a) is used for the other three high
Reynolds number cases.

Figs. 3.8a - 3.8d show the comparison between the predicted and measured mean velocity
profiles for the four cases considered. The NNWRS model gives an excellent prediction of U™ in
the near-wall region for all cases and in the entire flow region for Re, = 250 case, but it slightly
underpredicts the velocity in the region close to the centerline as the Reynolds number increases.
Even with the use of damping function (2-29b) for the low Reynolds number flow, the NWRS
model still underpredicts the mean velocity in the log-law region for the Re . =250 case. For the
other three higher Reynolds number cases, the NWRS model also underpredicts the mean
velocities in the region close the centerline, although its predictions are slightly better than those
obtained from the NNWRS model. The predicted and measured von Karman constants for these
four cases are presented in Table 3.1. Overall, both models reproduce well the mean velocity
profiles including the log-law behavior in fully developed pipe flow.

Figs. 3.9 - 3.12 compare the predicted turbulence quantities with available experimental data.
In each figure, four panels are presented for the four different Reynolds number cases. In Figs.
3.9a - 3.9d, the peak value of the turbulent kinetic energy &* is underestimated by the NNWRS
model except for the Re, =250 case, whereas it is well predicted by the NWRS model in all
cases. Away from the wall, both models give almost the same results, which agree with the
measurements reasonably well. Both models give almost the same predictions of the dissipation
rate (see Figs. 3.10a - 3.10d), except in the near-wall region where the dissipation rate predicted
by the NWRS model has a more noticeable plateau. The predicted dissipation rate has a maximum
value at the wall (Figs. 3.10a - 3.10d), which disagrees with the experimental data in the near-wall

region (Figs. 3.10b - 3.10c). Away from the wall, the agreement between the model predictions
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and measurements is very good. Figs. 3.11a - 3.11d show the excellent agreement between the
model predictions of the turbulent shear stress and the measurements whenever the measured data

are available. As in channel flow, model predictions underestimate the turbulence fluctuation in
the streamwise direction u,. . in the near-wall region, whereas overestimate the turbulence
fluctuations in the wall normal and transverse directions v, . and w - (Figs. 3.12a - 3.12d). The
exception is the highest Reynolds number case Re . =8758 in which the w},  is underpredicted
by both models (Fig. 3.12d). Fig. 3.13 plots k* /& as a function of y** for the four cases with
Re, ranging from 250 to 8758. As in channel flow, the predicted &/ &" in pipe flow follows
the line representing k™ / (€*y*?)=1/2 in the near-wall region.

3.2.3 Fully-developed plane Couette flows In plane Couette flows, one wall is stationary and
the other is moving. A fully developed state is reached when the moving wall is dragged with a
constant speed. The moving wall provides the energy to drive the flow. In the fully developed
state, the total shear stress (viscous plus turbulent) is constant everywhere. Despite the seemingly
simplicity of the flow, fully developed Couette flow is rather difficult to realize in laboratory,
because of the difficulty in setting up the moving wall. But, it is a simple case for DNS (Lee and
Kim 1991; Kristoffersen et al. 1993). The DNS data revealed some distinct features in Couette
flow. For example, large scale eddies can be identified in the core region; flow in this region is
quasi-homogeneous with turbulence production equal to dissipation rate but highly anisotropic.

These features are quite different from those in Poiseuille flow driven by pressure gradient.

Calculations are carried out for Couette flow with Reynolds number (based on half channel

width) Re, =170 and Re, = 625, and the results are compared with the DNS data given by Lee
and Kim (1991) for the Re, =170 case and the experimental data given by El Telbany and

Reynolds (1980) for the Re, =625 case. The damping function (2-29a) is found to be suitable

for both cases, although the Reynolds number in Lee and Kim's (1991) case is rather low

(Re, =170). This indicates that plane Couette flow is less dependent on Re than Poiseuille

flow, which becomes more transparent by comparing the mean flow equations given in Appendix

C. A term proportional to 1/ Re, appears in the non-dimensional mean flow equations for channel
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(C-1) and pipe flows (C-14). However, no such term appears in the mean flow equation for
Couette flow (C-27).

Since all the turbulent quantities in Couette flow are symmetric about the centerline and
(U/U,, —1/2) is anti-symmetric about the centerline (U,, is the speed of the moving wall), we
first present the model results in the lower half of the flow domain for both cases, and then show
the results for the second case (Re; = 625) in the entire domain. Figs. 3.14a-3.14b compare the
model predictions of the mean velocity profiles with the DNS results for Re, =170 and the

experimental data for Re, =625. Model predictions agree well with the data, although the

NNWRS model slightly underpredicts the mean velocity in the core region. The predicted von
Karman constant is very close to the K values from DNS and measurements (Table 3.2).

In the near-wall region, the behavior of turbulent quantities is similar to their counterparts in
Poiseuille flow (channel/pipe flows) (Figs. 3.15-3.18). Away from the near wall region, all the
turbulent quantities rapidly becoming constant, and the turbulent flow field becomes homogeneous

but remains isotropic (see Fig. 3.18). Again, the predicted k¥ / €™ by both models in the near-

wall regicn follow k* /(e*y**)=1/2(Fig. 3.19). Fig. 3.20 compares the predicted U / U,, k¥,

+ Tt + + + : _ :
€7, UV, Uppe, Vemss Wrms With the measurements for the Re, = 625 case over the entire flow

domain. The mean velocity and the turbulent shear stress are accurately reproduced by both

models. In the core region, both models underestimate the turbulent kinetic energy k™ and the

turbulent fluctuation in the wall normal direction v, . The turbulent fluctuation in the other two

directions u, . and w},, . are predicted quite accurately.
3.3 Plane Boundary-Layer Flows with Zero Pressure Gradient

For two dimensional boundary-layer flow, the governing equations of the models become
parabolic (Appendix C.4). Wilcox's (1993) implicit, two-dimensional code developed for two-
equation turbulence models is modified for the NNWRS and NWRS models. His code
incorporates the compressible form of Levy-Lees transformation (Appendix C.5), which removes

the singularity near the leading edge of the plate. In this transformation, dimensionless parameters
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are introduced to represent the compressible effects. These parameters are set to zero and one for
incompressible and isothermal flows, respectively. Thus, we still can use the same transformation
to remove the singularity near the leading edge of the plate for incompressible turbulent boundary-
layer flow.

Computations are carried out by marching in the downstream ( x) direction with iterations in
the wall normal ( y) direction. The step size in the downstream direction is adjusted according to
how well the solution is converged at the previous cross-section location. In each cross-section,
the distribution of the grid points follows a geometric progression ratio formula. After each
iteration, the code checks for sufficient grid width. This is done by checking the difference of the
mean velocity values between two successive grid points near the edge of the layer. If the
difference is larger than about 107, a grid point is added to the domain. This ensures that all the
wall normal derivatives will be zero near the boundary layer edge. Convergence is attained if the
maximum errors in the mean and turbulence quantities between two successive iterations is less
than 1074,

The turbulence quantities at the edge of the boundary layer, Ulle, Ve, WWe, uve and E,, are

determined by solving the following ordinary differential equations,

duue 1 2

U, g;‘ =—Cig,by, + CyE, (b + by -3M-3e (3-8a)

U, PV = _Cie.byy + Cye. (b + b - %H) --i-ge , (3-8b)
dww 1 2

Ue g:je =-C18eb33 +C2€e(b323 -EH)“EEe , (3-8C)
duve d

U, o —Cigbyy + G, (by by +b3by;) (3-8d)
o€ g?

U —=£=-C.,—=& . (3-8e)

e &x £2 k

which are reduced from the Reynolds stress equations in the models (Appendix C.4) under the

assumption that all the wall normal derivatives vanish in the free stream. Therefore,
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Uie, Ve, WWe, Uve, and €, given by (3-8) automatically satisfy the zero normal gradient

conditions.

At the initial marching location, a total of 150 grid points are used to cover the computational
domain. As the boundary layer grows in the downstream, the number of grid points increases. In
the numerical computations, the grids are distributed so that at least 15 points are located within
y* <5, and more than 40 points are placed in the region 5<y* <65. Furthermore, the
distribution ensures that the first grid away from the wall is placed within y* < 1.

Two boundary-layer flow cases are selected to test the models' ability to replicate simple
external flows. Model results are compared with the DNS data given by Spalart (1988) at
Reg =1,410 and the detailed measurements of Karlsson and Johansson (1988) at Re, = 2,420
(Figs. 3.21 - 3.25). The predicted mean velocity profiles, which show the existence of a wake
region in the outer layer, agree well with the DNS data and measurements (Figs. 3.21a - 3.21b).
* r o, ve o and wi

rms? rms? rms and

The agreement between the predicted turbulent quantities kt, e*, W+, u

the available data for both cases is reasonable (Figs. 3.22 - 3.25). At Reg =1,410, the turbulent
quantities k*, wv', u),, v}, and w},  are first presented in the near-wall region and cross the
boundary layer. In general, the NWRS model gives more satisfying predictions of the turbulence
field in the near-wall region. The variations of the predicted turbulence quantities in the near-wall
region are similar to those of the internal flows, with the exception that the maximum dissipation
rate predicted by the NNWRS model is at a location very close to the wall, instead of the wall itself
(Figs. 3.23a - 3.23b). As expected, all the turbulence quantities approach zero close to the edge of
the boundary layer and match the freestream condition (Figs. 3.22 - 3.25). Fig. 3.26 shows that
predicted ratio k* / €* in the near-wall region varies according to y*2, as in the internal flows.
Note that unlike the internal flow computations in which Re, is specified, the boundary-
layer computations are carried out by providing mean velocity and turbulent quantities at the initial

location and free stream. Consequently, the wall shear stress, 7,,, is a predicted result rather than

an input. The accuracy of this quantity or the skin friction coefficient Cf =27, /(pUi) can be

taken as an indication of the models' ability to predict external flows. Thus, in addition to
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comparing the von Karman constant X, the calculated and measured C, are also compared (see

Table 3.1). From Table 3.1, one can see that the predicted K and C; agree well with the known
results for both cases.

3.4 Reynolds-Number Effects on Simple Turbulent Flows

Using dimensional analysis, Millikan (1939) argued that Reynolds number effects could not
be present in the mean velocity in wall-bounded turbulent flows. His argument is correct only in
the near-wall region. Mellor and Gibson (1966) showed that Reynolds number has influence on
the mean velocity in the outer region. Purtell et al (1981) pointed out that as Reynolds number
decreases, the logarithmic region slowly disappears, while the viscous region remains unaffected

by the decreasing Reynolds number.

When local similarity arguments are applied to the higher-order turbulent statistics, they
imply that, at least in the inner layer, individual second-order statistics at different Reynolds
numbers would collapse into a single curve if they are nondimensionalized by using inner-layer
scalings. Recently, direct numerical simulations, together with experimental measurements and
analysis, have shown that Reynolds number effects on wall-bounded turbulent flows are evident,
not only in the mean flow but also in the second-order statistics of the turbulence field. A most
convincing demonstration of the Reynolds number effects on second-order statistics was given by
Bandyopadhyay and Gad-el-Hak (1994), who showed that the location of the peak value of the
turbulent shear stress, normalized by v/ u,, increases with Reynolds number. So et al. (1996)
have demonstrated that the NWRS model can predict the Reynolds number effects on mean and
turbulence flow fields in simple flows with a wide range of Reynolds numbers. In what follows,
we examine the ability of the NNWRS model to replicate the Reynolds number effects in wall-
bounded simple turbulent flows.

3.4.1 Reynolds-number effects on mean flow  To show the Reynolds number effects on the
mean flow, the predicted normalized mean velocity by the NNWRS model for internal (channel

and pipe) and external (boundary layer) flows with different Reynolds numbers are plotted together
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in Figs. 3.27a and 3.27b, respectively. Note that Couette flow is excluded in this section because
it is less dependent on Reynolds number compared with the other internal flows. For comparison,
the available DNS and experimental data are also plotted in Fig. 3.27. For channel/pipe flow,
model predictions and the available data show little wake component, and the log layer extends all
the way to the centerline (Fig. 3.27a). The extent of the log layer increases as Reynolds number

increases. In the viscous layer, the data and model results are all very well correlated by a single

*. On the other hand, for boundary layer flow, the model results and the available

curve Ut =y
data show a wake component in the defect layer and a reduction of the log-law region as Reynolds
number decreases (Fig. 3.27b). However, the mean velocity in the viscous layer is unaffected by
Reynolds number and again is well approximated by U™ = y*.

In the log layer, the velocity profile varies according to (3-4). The von Karman constant K
obtained by following the procedure outlined in So et al. (1994) for each individual case has been
given in Table 3.1. From Table 3.1, one can see that Reynolds number has no influence on the
von Karman constant in wall-bounded flows. In fact, the velocity profiles for different Reynolds
numbers in the log layer can be well correlated by (3-4) with K =0.40 and B=5.2 for
channel/pipe flow (Fig. 3.27a), except for the Re, =8758 case where the mean velocity is
underpredicted by the NNWRS model, and with K =0.41 and B =35.2 for boundary layer flow
(Fig 3.27b). Both models do a fair job of reproducing the universal inner-layer behavior and the
prediction of K is within the error margin of its determination from experiments. In general, a
value of 0.40 is obtained and this is in agreement with experimental and DNS data.

For boundary-layer flow, the effects of Reynolds number on the shape factor H = 516
(where 8 and @ are the displacement and momentum thickness of the boundary layer,
respectively) and skin friction coefficient Cy =27, /pUi are also examined. The predicted and
measured H and C; are reported in Table 3.1. The DNS and experimental data show that A and

C decrease as Reynolds number increases, which is also predicted by the models. Both models

predict the shape factor well. But the NWRS model gives a more accurate prediction of the skin

43



friction coefficient than the NNWRS model. Overall, Reynolds number effects on the mean flow
are fairly well reproduced by the NNWRS model, as well as by the NWRS model.

3.4.2 Reynolds-number effects on turbulence statistics Momentum transport in two-
dimensional wall-bounded turbulent flows is mainly carried out by the Reynolds shear stress.
Therefore, it is of paramount importance to model the shear stress behavior correctly. In fully
developed channel/pipe flows, the normalized shear stress can be expressed as

—wv' =(1-y*/Re,)-dU" I dy* . (3-9)

Assuming a universal velocity profile, it can be seen from (3-9) that the Reynolds number
dependence of the shear stress in the inner layer is rather strong at low Reynolds number. Wei and
Willmarth (1989) examined channel/pipe flows and found that the normalized shear stress at
different Reynolds numbers does not collapse in the outer layer and the separation of the different
profiles is still discernible in the inner layer. The calculated shear stress profiles for different
Reynolds numbers are plotted together in Figs. 3.28a and 3.28b for channel/pipe and boundary-
layer flows, respectively. Whenever the DNS and experimental data are available, they are also
plotted in the figures for comparison. Fig 3.28 shows that in the logarithmic and outer regions, the
shear stress profiles spread out as Reynolds number increases. In the viscous layer, the shear
stress profiles at different Reynolds number in channel/pipe flow do not quite collapse into a single
curve, whereas they do collapse into a single curve in boundary-layer flow. Thus, the influence of
Reynolds number on the shear stress is more pronounced in channel/pipe flow than in boundary-
layer flow.

Another test of the ability of the NNWRS model to reproduce Reynolds number effects is to
plot the location of the peak shear stress versus Re; for boundary layer flow, the reduced
Reynolds number defined as Re; =u,0/ v is used instead (Bandyopadhyay and Gad-el-Hak
1994). The location of the peak shear stress, denoted by y;, can be determined from the shear
stress profiles shown in Fig. 3.28. A log-log plot of y; versus Re, is shown in Fig. 3.29 for all

the flows examined. According to Sreenivasan (1988), a linear relation should exist between In y;



and InRe,. Bandyopadhyay and Gad-el-Hak (1994) showed that the straight line y; = 2(Rer)” 2
correlates well with the experimental data they examined in a log-log plot. Fig. 3.29 shows that
the calculated results by the NNWRS model also correlate well with the same straight line.

The normalized production of kinetic energy, P* =—uv' (dU* /dy*), is shown to be
relatively independent of Reynolds number in the outer region of channel flow but not so in the
inner region (Wei and Willmarth 1989). Furthermore, the location of the peak value of P* is also
relatively independent of Reynolds number (Bandyopadhyay and Gad-el-Hak 1994), although the
location of the peak shear stress varies with Re; (see Fig. 3.29). These conclusions can also be
deduced from (3-9) and the definition of P*. As Re, — oo, P" reaches its maximum 1/4. The
calculations and measurements of P* plotted versus Iny* are shown in Figs. 3.30a - 3.30b. As
expected, there are no Reynolds number effects on the calculated P* in the outer layer for
channel/pipe flow and boundary-layer flow. In the inner layer, the dependence of P* on
Reynolds number in internal and external flows is different (cf. Fig. 3.30a with 3.30b). In
channel/pipe flow, P*, particularly its peak value, distinctly depends on Re .. Although the
calculated location of the peak shear stress wv’ varies with Re, (Fig. 3.29), there is little variation
in the location of the peak value of the predicted P*. In both channel/pipe flow and boundary-
layer flow, P* peaks at about y* =10, which is consistent with y* =12 given by
Bandyopadhyay and Gad-el-Hak (1994) who examined different sets of data with a different
Reynolds number range. The peak value of the calculated P is close to 1/4 and approaching 1/4
only at high Reynolds number. The Reynolds number also has more effects on the peak value of
the shear stress than the peak value of the production of kinetic energy (cf. Fig. 3.30 with 3.28).
The ability of the NNWRS model to predict these important features of wall-bounded flows is
another indication of the validity of the model.

The predicted turbulent dissipation rate £ and the viscous diffusion of turbulent kinetic
energy, D} =d?k* /dy*?, are compared with DNS data and measurements in Figs. 3.31a -

3.31b. Very near the wall, the dissipation rate is approximately balanced by the viscous diffusion.
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According to the asymptotic analysis in Section 2, this suggests that the pressure diffusion is
much weaker than the viscous diffusion and the dissipation rate in the viscous layer. The predicted
viscous diffusion is not sensitive to the variation of Reynolds number, neither is the dissipation

rate except at very low Reynolds numbers.

3.5 Concluding Remarks

In this section, the NNWRS model has been verified by comparing model predictions with
the DNS data and measurements for fully-developed wall-bounded simple flows: channel flow,
pipe flow, and Couette flow, and for boundary-layer flow. The results show that the NNWRS
model predicts the mean and turbulent flow fields of internal and external flows reasonably well.
The model is also able to capture the log-law region with a correct von Karman constant and
replicate the Reynolds number effects on the mean flow and second-order statistics. The main
deficiency in the model is that it predicts less degree of turbulence anisotropy in the near-wall
region compared to the NWRS model. This may be attributed to the more general formulation in
the NNWRS model, i.e., no wall normal has been used in the model. In the next section, we shall

apply the NNWRS to study wall-bounded complex turbulent flows.
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Table 3.2 Comparison of the predicted K with data in Couette flow.

Data Source Re, Data | NNWRS [ NWRS
Lee and Kim (1991)
(DNS) 170 | 0.40 0.40 0.39
El Telbany and Reynolds
(1980) (EXP) 625 | 0.39 0.40 0.40
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Fig. 3.1 Sketch of different flow regions in a wall-bounded turbulent flow.
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Fig. 3.2a Comparison between the predicted and DNS mean velocity profiles in the fully
developed channel flow at Re . =180.
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Fig. 3.2b Comparison between the predicted and DNS mean velocity profiles in the fully
developed channel flow at Re, =395.
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Fig. 3.3b Comparison between the predicted and DNS turbulent kinetic energy in the fully
developed channel flow at Re, = 395.
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Fig. 3.4a Comparison between the predicted and DNS dissipation rate in the near-wall region of
fully developed channel flow at Re, = 180.
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Fig. 3.4b Comparison between the predicted and DNS dissipation rate in the near-wall region of
fully developed channel flow at Re ; = 395.
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Fig. 3.5a Comparison between the predicted and DNS turbulent shear stress in the fully developed
channel flow at Re, = 180.
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Fig. 3.5b Comparison between the predicted and DNS turbulent shear stress in the fully developed
channel flow at Re, =395.
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Fig. 3.6b Comparison between the predicted and DNS turbulent fluctuations in the fully developed
channel flow at Re, = 395.
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Fig. 3.7 Predicted k* / € vs y*? in the near-wall region for fully developed channel flows.
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Fig. 3.8a Comparison between the predicted and measured mean velocity profiles in the fully
developed pipe flow at Re, = 250.
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Fig. 3.8b Comparison between the predicted and measured mean velocity profiles in the fully
developed pipe flow at Re, = 489.
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Fig. 3.8¢c Comparison between the predicted and measured mean velocity profiles in the fully
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Fig. 3.8d Comparison between the predicted and measured mean velocity profiles in the fully
developed pipe flow at Re, = 8758.
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Fig. 3.9a Comparison between the predicted and measured turbulent kinetic energy in the fully
developed pipe flow at Re ; =250.
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Fig. 3.9b Comparison between the predicted and measured turbulent kinetic energy in the fully
developed pipe flow at Re, = 489.
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Fig. 3.9d Comparison between the predicted and measured turbulent kinetic energy in the fully
developed pipe flow at Re , = 8758.
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Fig. 3.10a Comparison of the predicted dissipation rate in the near-wall region of fully developed
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Fig. 3.10b Comparison between the predicted and measured dissipation rate in the near-wall region
of fully developed pipe flow at Re . = 489.
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Fig. 3.10c Comparison between the predicted and measured dissipation rate in the near-wall region
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Fig. 3.10d Comparison of the predicted dissipation rate in the near-wall region of fully developed
pipe flow at Re, = 8758.
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Fig. 3.11a Comparison of the predicted turbulent shear stress in the fully developed pipe flow at
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Fig. 3.11b Comparison between the predicted and measured turbulent shear stress in the fully
developed pipe flow at Re, = 489.
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Fig. 3.11c Comparison between the predicted and measured turbulent shear stress in the fully
developed pipe flow at Re, =1052.
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Fig. 3.11d Comparison between the predicted and measured turbulent shear stress in the fully
developed pipe flow at Re, =8758.
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Fig. 3.12a Comparison between the predicted and measured turbulent fluctuations in the fully
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Fig. 3.12b Comparison between the predicted and measured turbulent fluctuations in the fully
developed pipe flow at Re; = 489.
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Fig. 3.12¢c Comparison between the predicted and measured turbulent fluctuations in the fully
developed pipe flow at Re, =1052.
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Fig. 3.12d Comparison between the predicted and measured turbulent fluctuations in the fully
developed pipe flow at Re, = 8758.

65



25+

] Ret NWRS NNWRS
] 250 @] ®
20—_ 489 A A
11052 ¢ .
1 8758 O ]
154
k*et ]
10
5]
0 3 T vV T l T T T T r T T 1 1 ' T 1 1 71 I T 1T 1T 7T I T T T T ]
0 5 10 15 20 25 30

y+2 = (}26‘t - r+)2
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Fig. 3.14a Comparison between the predicted and DNS mean velocity profiles in the fully
developed Couette flow at Re, =170.
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Fig. 3.14b Comparison between the predicted and measured mean velocity profiles in the fully
developed Couette flow at Re, = 625.
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Fig. 3.15a Comparison between the predicted and DNS turbulent kinetic energy in the fully
developed Couette flow at Re, =170.
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Fig. 3.15b Comparison between the predicted and measured turbulent kinetic energy in the fully
developed Couette flow at Re, = 625.
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Fig. 3.16a Comparison of the predicted dissipation rate in the near-wall region of fully developed
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Fig. 3.16b Comparison of the predicted dissipation rate in the near-wall region of fully developed
Couette flow at Re ; = 625.
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Fig. 3.17a Comparison between the predicted and DNS turbulent shear stress in the fully
developed Couette flow at Re, = 170.
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Fig. 3.17b Comparison between the predicted and measured turbulent shear stress in the fully
developed Couette flow at Re; = 625.
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Fig. 3.18a Comparison between the predicted and DNS turbulent fluctuations in the fully
developed Couette flow at Re . =170.
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Fig. 3.18b Comparison between the predicted and measured turbulent fluctuations in the fully
developed Couette flow at Re; = 625.
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Fig. 3.20b Comparison between the predicted and measured turbulent kinetic energy over the
entire fully developed Couette flow region at Re , = 625.
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Fig. 3.20e Comparison between the predicted and measured turbulent fluctuations over the entire
fully developed Couette flow region at Re , = 625.
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Fig. 3.21a Comparison between the predicted and DNS mean velocity profiles of boundary-layer
flow at Reg =1410.
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Fig. 3.21b Comparison between the predicted and measured mean velocity profiles of boundary-
layer flow at Regy =2420.

76



57 _
] Reg=1410 000,
] o° 000
4 ° 0000
: lo ““"‘~_
10
37 0
k1
27 ]
1 aJ o Spalart (1988)
1d - NWRS
] NNWRS
0TYTII!YVIIIYVIIYVIIITIYT]!IIV‘
0 10 20 30 40 50 60

+

y

Fig. 3.22a Comparison between the predicted and DNS turbulent kinetic energy in the near-wall
region of boundary-layer flow at Reg =1410.

4

(9]
oo o oo by ey

Fig. 3.22b Comparison between the predicted and DNS turbulent kinetic energy cross the
boundary layer at Rey =1410.
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Fig. 3.23 Comparison between the predicted and measured turbulent kinetic energy cross the
boundary layer at Rey = 2420.
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Fig. 3.24a Comparison between the predicted and DNS dissipation rate in the near-wall region of
boundary-layer flow at Reg = 1410.
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Fig. 3.24b Comparison between the predicted and measured dissipation rate in the near-wall region
of boundary-layer flow at Reg = 2420.
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Fig. 3.25a Comparison between the predicted and DNS turbulent shear stress in in the near-wall
region of boundary-layer flow at Rey =1410.
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Fig. 3.26 Comparison between the predicted and measured turbulent shear stress cross boundary
layer at Regy =2420.
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Fig. 3.27a Comparison between the predicted and DNS turbulent fluctuations in the near-wall
region of boundary layer flow at Rey =1410.
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Fig. 3.27b Comparison between the predicted and DNS turbulent fluctuations cross boundary
layer at Rey =1410.

82



o Karlsson & Johansson (1988)
—————— NWRS
NNWRS

IR e e
0 200 400 600 800 1000

Fig. 3.28 Comparison between the predicted and measured turbulent fluctuations cross boundary
layer at Rey = 2420.
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Fig. 3.29 Predicted k™ / €* vs. y** in the near-wall region for boundary layer flows.
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Fig. 3.30a Comparison of calculated mean velocity plotted in inner-layer variables to show
Reynolds number effects in channel and pipe flows.
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Fig. 3.30b Comparison of calculated mean velocity plotted in inner-layer variables to show
Reynolds number effects in boundary layer flows.
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Fig. 3.31a Comparison of calculated turbulent shear stress uv" with data to show Reynolds
number effects in channel and pipe flows.
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Fig. 3.31b Comparison of calculated turbulent shear stress uv" with data to show Reynolds
number effects in boundary-layer flows.
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Fig. 3.33a Comparison of the calculated production of turbulent kinetic energy P* with data to
show Reynolds number effects in channel and pipe flows.
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Fig. 3.33b Comparison of the calculated production of turbulent kinetic energy P* with data to
show Reynolds number effects in boundary layer flows.
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Fig. 3.34a Comparison of the calculated turbulent dissipation rate £* and diffusion D, of
turbulent Kkinetic energy with data to show Reynolds number effects in channel and pipe flows.
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Fig. 3.34b Comparison of the calculated turbulent dissipation rate € and diffusion D} of
turbulent kinetic energy with data to show Reynolds number effects in boundary-layer flows.
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4  VALIDATION AGAINST TURBULENT FLOWS WITH SWIRL AND
SYSTEM ROTATION

4.1 Introduction

Swirling and rotating turbulent flows are often encountered in engineering applications. In
swirling flows, the induced swirl velocity component changes the paths of fluid particles from
parallel to spiral. The flow pattern is affected by the centrifugal force associated with local
streamline curvature. Recirculation may appear in the central region of the pipe close to the inlet.
In rotating flows, the rotation effect on flow patterns depends on the orientation of the rotating
axis to the mean flow plane, i.e. the relative importance of the centrifugal force to the Coriolis
force. Flow in a rotating pipe is mainly subject to the centrifugal force because the rotating axis is
parallel to the mean flow direction. On the other hand, only Coriolis force is dynamically
important to fully developed channel flow with rotating axis perpendicular to the mean flow plane.
Therefore, with the presence of swirl and rotation, the flows become much more complicated than
those discussed in Section 3. Although the present wall-independent near-wall Reynolds stress
(NNWRS) model is developed for flows with complex geometry, the model is also expected to
perform well for swirling and rotating flows. In this section, its ability to replicate such complex

flows is tested and compared with that of the NWRS model.
4.2 Turbulent Swirling Flows in a Straight Pipe

4.2.1 Background Earlier studies on swirling flows were mainly concerned with the mean flow
and pressure drop measurements and the decay of swirl along the pipe (Kreith and Sonju 1965;
Backshall and Landis 1969; Yajnik and Subbaiah 1973; Murakami et al. 1976; Padmanabhan and
Janek 1980; Ito et al. 1980; Kito 1984; Kito and Kato 1984). Little attention was paid to the decay
of the turbulence field. Measurements on the evolution of the turbulence field were carried out
only recently (Algifri et al. 1987; Kitoh 1991; Parchen et al. 1993).

Swirling flows in a straight pipe can be generated by rotating an inlet section of the pipe

(Weske and Sturov 1974) or by a vane swirler installed at the entrance of the pipe (Kitoh 1991).
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The swirl intensity can be measured by the swirl number S defined as the ratio of the angular
momentum to the axial momentum. For axisymmetric flows, swirl number can be expressed as
(Kitoh, 1991)

2_[ "UWr2dr
— 4]

S , 4-D

70U
where U and W are the mean velocity components in the axial and azimuthal, respectively; U,, is

the bulk mean axial velocity; r and r,, are the radial position and the pipe radius.

Fig. 4.1 shows a typical azimuthal velocity profile W in axisymmetric swirling pipe flows.
In the so called forced-vortex region, the velocity profile resembles that associated with rigid-body
rotation, i.e., the velocity linearly increases with increasing distance from the centerline. The mean
vorticity in the axial direction is a constant in this region. Outside the forced-vortex region, the
velocity starts decreasing and matches the wall boundary condition through the boundary layer.
The region between the boundary layer and the forced-vortex region is called the free-vortex region
because the axial vorticity strength is almost zero there. Table 4.1 summaries the characteristics of
swirling flows in forced- and free-vortex region. In forced vortex region, the rotational strain
associated with swirl (dW /dr— W /r)/2 is zero and swirl does not provide additional turbulent
production. On the other hand, in the free-vortex region, the rotational strain is not zero and swirl
provides extra production. Turbulence is thus stabilized in the forced-vortex region and
destabilized in the free vortex generated by swirl. The extent of the forced- and free-vortex
region in swirling flows depends on swirl intensity and the way swirl is generated. For instance,
the swirling flows in Weske and Sturov's (1974) experiments , generated by a rotating gird in the
inlet section, are forced-vortex-dominated, whereas the swirling flows generated by a vane swirler
in Kitoh's (1991) experiments are free-vortex-type.

Flow characteristics near the pipe centerline also depends on the swirl number S. For flows
with S <1, areverse flow region usually is not observed because the pressure depression is not

strong enough to create a reverse flow. For flows with §>1, a reverse flow region may appear
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depending on whether other conditions, such as Reynolds number, inlet conditions and the way
swirl is generated, are favorable to the formation of such region or not. For example, the
experiments of Kitoh (1991) showed a reverse flow region existed, whereas the experiments of
Weske and Sturov (1974) did not indicate such region existed, although the initial swirl number S,
is greater than one in both cases.

Swirl decays along the pipe as a result of wall friction, and the mean azimuthal velocity
profile alters as flow approaches to the fully-developed state downstream. Swirl decay rate was
found to be dependent on inlet swirl intensity, Reynolds number, and pipe roughness (Seno and
Nagata 1972; Baker 1967; Padmanabhan and Janek 1980). For small swirl number, Kitoh (1991)
derived an exponential formula to predict the attenuation of axisymmetric swirling flow along the
pipe. For large swirl number, swirl decay rate can be obtained only by experiments or numerical
computations.

The unique features of swirling flows have already been made use of in a number of
engineering applications. Prominent among them are flames in gas turbines and furnace
combustors in which swirl strongly contributes to efficiency of combustion by enhancing mixing,
and to flame stability through recirculation. The primary mixing enhancement is attributed to
higher levels of turbulence generated by the additional mean shear strain. Table 4.2 compares the
mean shear strain components in swirling flows and parallel flows.

Turbulence in swirling flows is anisotropic. The anisotropy results from the uneven
weighting of swirl effect on turbulent normal and shear stresses. The degree of anisotropy
depends on the swirl intensity and the location in the flow. A rather careful analysis of this
anisotropic behavior was carried out by Lilley and Chigier (1971) using the mean flow
measurements of the swirling free jet experiment of Lilley and Chigier (1967). They found that
depending on swirl number, the ratio 7, /T, varies from 2 to more than 8, where 7,, and 7,

are the rx and r@ components of the turbulent shear stress, respectively. Consequently, only
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those more advanced turbulence models that can replicate stress anisotropic behavior are expected
to give satisfactory predictions of swirling flows.

So far, most modeling work on swirling flows have been carried out by using modified
versions of two-equation models (Sloan et al. 1986). With the isotropic turbulence assumption,
two-equation models need to be modified before they are used to predict anisotropic swirling
flows. Great efforts have been put on the improvement of swirl effect in two-equation modeling.
The improvement was often marginal and obtained in a single tested case without further validation
in others. This necessitates the need of using other turbulence modeling beyond the Boussinesq
approximation. In other words, Reynolds stress modeling is needed for a more accurate prediction
of swirling flows. A small number of attempts have been made to predict strongly swirling flows
(free or confined) by using Reynolds-stress models (Jones and Pascau 1989; Hogg and Leschziner
1989; Fu et al. 1988). The results show clearly the superiority of the Reynolds stress models to
the modified two-equation models.

4.2.2 Boundary conditions and numerical implementation For axisymmetric swirling flows
in a straight pipe, the model governing equations are elliptic. To solve the equations in the ( x, r)-
plane, boundary conditions at the inlet and outlet of the computational domain, along the centerline
of the pipe and at the wall are required. The inlet boundary conditions for numerical computations
are provided by the available experimental data at the first measured location (with interpolations if

necessary). Turbulence kinetic energy k;, at the inlet of the computational domain can be specified

from the available turbulent normal stresses by

Ullin + VVin + WWi
in - m mn n . (4-2)
2

The dissipation rate at the inlet is estimated from the turbulent kinetic energy according to

3/2
€. _.kin
e

(4-3)

where [ is the characteristic length scale of the case considered (such as the radius of the pipe in a

swirling pipe flow), and A =0.02 is a parameter. The turbulent shear stresses at the inlet are
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specified from the mean shear strain rates through the Boussinesq approximation. At the outlet of
the computational domain, negligible diffusion condition in the axial direction is found to be the
most appropriate outlet boundary condition. This implies that the second derivatives of the
dependent variables can be assumed to be zero for a sufficient long computational domain (100
diameters in the present study).

Along the centerline of the pipe, zero normal gradient is specified for all dependent variables

except those that they are zero themselves,

U, W, uu, v, ww, uw, €)

or

=0,and V=uv=vw=0 . (4-4)

At the wall, the no-slip conditions are applied, i.e., all the variables are zero except dissipation rate

€, which is given by

2
V= 2v( ‘NEJ : (4-5)
ar )

The TEACH code for incompressible flows by Gosman and Ideriah (1976) is adopted for the
numerical computations. This code uses the finite volume (cell) method to discretize the transport
equations and adopts the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
algorithm of Patankar and Spalding (1972) to solve the discretized system of equations. A detailed
account of the finite volume method and SIMPLE algorithm can be found in Patankar (1980),
among many other references. Here, a brief description is given to the finite volume method and
the solution procedure.

The time-averaged transport equations of mean and turbulence quantities can be rewritten in

the following form

Ve(U®)=Ve(I',VD)+S, |, (4-6)

where & is a dependent variable representing U;, €, and Wi [ is the effective diffusion
coefficient, and Sg represents the rest of terms that cannot be included into convection and
diffusion terms. The flow domain is divided into a series of control volumes according to the

given grid points. Equation (4-6) is integrated within each control volume and the result is
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expressed in terms of the unknown variable at neighboring grid points. In a control volume
centered at grid point P (Fig. 4.2), which is surrounded by the neighboring grid points £, W, N

and S, the resulting discretized equation for @ can be written as

A, D, =A, D, + A, Dy + AP, +AD, +5AV | (4-7)
where the subscript of @ indicates the evaluated location; coefficients As involve U; and I',,, and
depend on the method used to discretize the integrals corresponding to the convection and diffusion
terms in (4-6); S is the average of the source term S¢ 1n (4-6) over the control volume, and AV is

the volume of the cell. The averaged source term S is expressed formally as a linear function of

¢’s
S=S.+5,®, , (4-8)

where S, is the coefficient of ®,, and S, is the part in S that does not depend on @, (formally).
For the turbulent transport equations governing the Reynolds stresses and dissipation rate &, the
averaged source term § is a strong function of the dependent variable ®. One can come up with
different expressions for S, and S, especially for the complex source terms in the Reynolds-
stress equations. It suffices to say that the way § is partitioned into S- and Sp®p plays a very
crucial role in finding the solution. In general, it is desirable to have a negative S, since a positive
S, could cause divergence.

In the present modeling of axisymmetric swirling flows, the hybrid scheme (a combination of
the central difference and upwind schemes) described by Patankar (1980) is used. The control
volume shown in Fig. 4.2 is used for all the dependent variables except the mean velocity in the
axial and radial directions U and V. The control volumes for U and V are staggered as shown in
Fig. 4.3a and Fig. 4.3b, respectively.

Since the system of equations (4-6) are nonlinear with coefficients and source terms as
functions of & itself and other dependent variables, the final solution is obtained by iteration.
Under-relaxation iteration technique (Patankar 1980) is used to solve the system of equations.

With the introduction of the under-relaxation parameter «, (4-7) can be rewritten as,
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A _ _ *
_chpp:AEch+AW¢W+AN<DN+AS<DS+SAV+% : (4-11)
o a

where @, stands for the value of @, from the previous iteration.

A tridiagonal matrix algorithm is used to solve the system of equations (4-11). A line-by-
line iterative approach is adopted in alternating directions within the consecutive stages of the
SIMPLE algorithm as described by Patankar (1980). The details of handling the mean velocity and

pressure variables and associated difficulties can also be found in Patankar (1980).

The implementation of the above numerical procedure to solve a Reynolds stress model is not
a trivial task. For axisymmetric swirling flows, we still have eleven equations for eleven
unknowns: three mean velocity components, six Reynolds stresses, one dissipation rate and one
mean pressure variable. Obtaining the solutions of these highly nonlinear and coupled transport
equations requires a great number of iterations. Intermediate results of a near-wall two-equation
model are used to initialize the iterations, which usually lead to the converged solution faster.
Converged solutions are obtained when the maximum residuals of the mass and momentum

equations in the entire computational domain are less than a small number & = O(107), i.e.,

Ryax =max{R,, Ry, Ry} <8 , (4-12)

where Ry is the sum of the normalized absolute residuals across all the computational nodes,
namely
D S (A®,)+54V -A,D,

R, = I=E.W.N.S — (4-13)

and ®=1, U and V for the mass equation, momentum equations in axial and radial directions,

respectively. F;, is the mass-flow rate at the inlet, and, ®;, takes the inlet axial mean velocity for

the momentum equations. Note that the azimuthal velocity W does not appear in the mass

conservation equation for axisymmetric flows. Therefore, it is not used in the criteria for

convergence (4-12).
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4.2.3 Cases studied Swirling flows with a reverse flow region provide further challenges for
turbulence modeling. To rigorously test our turbulent models, the experiments of Weske and
Sturov (1974) and Kitoh (1991) are selected for model validations. The reverse flow region
observed in Kitoh's (1991) experiments starts near the inlet and has a length about 40 diameters of
the pipe. According to the definition of swirl number (4-1), the reference or entrance swirl number
S, is about 1.3 in Weske and Sturov's case and approximately 1 in Kitoh's (1991) case; the
Reynolds number (based on the pipe diameter and averaged mean axial velocity) is about 30,000
and 50,000, respectively. As mentioned before, due to different ways of generating swirl, the
mean azimuthal velocity at the inlet of the pipe is forced-vortex dominated in the Weske and
Sturov's case, whereas it is free-vortex-type in the Kitoh's case. As a result, the azimuthal
velocity profiles evolve differently downstream. In Weske and Sturov's case, the dominated
forced-vortex region reduces and the free-vortex region grows as swirl decays, with maximum
azimuthal velocity shifting to the centerline of the pipe. In Kitoh's case, the free-vortex region is
dominated in the reverse flow region, and initial swirl decay is only associated with free vortex
motion.
4.2.4 Comparisons with data The computational domain is one radius in the radial direction
and 100 diameters in the axial direction. Two sets of grid points, 102 x86 and 51x 56 in the
axial and radial directions (Figs. 4.4a - 4.4b), are tested. The first grid shown in Fig 4.4a is
clustered in the inlet region, near-wall region and core (near centerline) region. The second grid
shown in Fig. 4.4b is also clustered in near-wall region, but less dense in the inlet and core
regions. For the NNWRS and NWRS models, both grids give almost the same predictions of the
mean and turbulence flow fields. Thus, only the results from the grid 51 x 56 are presented here.
The numerical results are presented first for the Weske and Sturov's (1974) case and then for
the Kitoh's (1991) case. Fig. 4.5 shows the streamline defined on the (x, r)-plane given by the
NNWRS model. Similar flow pattern given by the NWRS model (no shown) is observed. The
predicted flow pattern indicates no reserve flow occur in the flow region, which agrees with the

experimental observations. Owing to small radial velocity V, the streamlines on (x, r)-plane are
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almost parallel to the centerline. The predicted swirl intensity along the pipe is compared with the
data in Fig. 4.6. Both models give about the same swirl decay rate, which gradually decreases
along the pipe and approaches to a constant in the downstream. The predicted swirl number agrees
very well with the data up to x/D = 20, but it is slightly overestimated at x/D = 50. Further
downstream, no data are available for comparisons.

Figs. 4.7-4.9 compare model predictions of the mean flow and turbulent fields with available
data at measured locations x / D = 5.1, 20 and 50 (note the first measured location, corresponding
to x =0 in the computational domain, is x/D =0.35). Both models give almost the same
results. The agreement between the predicted mean axial velocity U and the data is very good
(Figs. 4.7a, 4.8a, and 4.9a). The mean axial velocity in the core region increases with increasing
axial distance (x), and its profile becomes almost uniform across the entire cross-section (except
the near-wall region) in the downstream. The predicted azimuthal velocity W also agree well with
the data (Figs. 4.7b, 4.8b, and 4.9b), although it gives a slightly higher vorticity strength in the
forced-vortex region and its peak location is shifted a little bit toward to the centerline. The peak
value of W decreases due to the decay of swirl along the pipe, and W in the downstream becomes
more uniform (cf. Fig. 4.7b with 4.9b). Both models essentially repeat the experimental findings
that the forced-vortex region shrinks and the vorticity strength weakens as the distance from the
inlet increases, whereas the free-vortex region increases with increasing distance. Predicted flow
skewness near the wall at different measured locations is shown in Fig. 4.10 by plotting U as a
function of W. Very close to the wall, the ratio U /W is a constant, which becomes larger as x
increases.

The agreement between the predicted turbulent quantities (kinetic energy k and root-mean-

squared turbulent fluctuations u and w,_ ) and the data is not very satisfactory (Figs.

rms? vrm.s"
4.7c-f and 4.9¢c-f; note that no experimental data are available at x/D =20 for k, u,, ., v,,, and
w,..). Near the inlet, at x/ D =5.1, the models predict the trends of these turbulent quantities

reasonably well, and the agreement between the model predictions and the data in the core region is
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acceptable (Figs. 4.7c-f). Further downstream, at x/D = 50, the model predictions agree well
with the data in the region covering half the radius from the wall, but are underestimated in the core
region (Figs. 4.9¢-f).

For the Kitoh's case, the models are able to capture the recirculation in the core region near
the inlet reported by Kitoh (1991) (Fig. 4.11). However, the length of the reverse flow region
predicted by the models is only about 7 diameters, which is much smaller than the observed length.
This accounts for the major discrepancies between the predicted and measured flow fields
discussed below.

The predicted swirl number along the pipe is compared with the data and the empirical
formula given by Kitoh (1991) (Fig. 4.12). The agreement among them is excellent. Swirl
attenuates exponentially along the pipe with a constant decay rate. Figs. 4.13 - 4.17 compare the
model results with the experimental data at following measured locations, x/ D=12.3, 19.0,
25.4, 32.4 and 39.0 (note that the first measured location, corresponding x =0 in the
computational domain, is x/D =5.7). At each location, six plots are presented for the mean
velocities U and W, turbulence kinetic energy k& the root-mean-squares of turbulent fluctuations
and w, . Overall, both models give almost the same predictions for mean flow and

U 1%

rms? rms?

turbulent field (Figs. 4.13-4.17). Reverse axial velocity (U < 0) (predicted by the models) is
observed only at x / D =12.3, the closest location to the inlet (cf. lines in Fig. 4.13a with 4.14a-
4.17a). This is consistent with the flow pattern shown in Fig. 4.11. At each location, the
predicted mean velocities follow the data well in the near-wall region, whereas they depart from the
data in the core region of the pipe with U being overpredicted and W being underpredicted. The
disagreement becomes worse as the location is further downstream. Fig. 4.18 shows the predicted
flow skewness in the near wall region. Again, very close to the wall, U is a linear function of W
with a slope increases as the distance from the inlet increases.

For turbulence kinetic energy & and root-mean-squared turbulent fluctuations «,, ., v, . and

Ww,,..» g0ood agreement between the model predictions and the data is found in the near-wall region,
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while discrepancy is observed in the core region of the pipe (Figs. 4.13c-f, 4.14c-f, 4.15c¢-f,
4.16c-f; 4.17c-f). Both models perform consistently in predicting the mean velocities and in
predicting the turbulence variables. Note that in this case the turbulent stresses are quite irregular

in the core region due to the recirculation. This case is a real challenge for any turbulence model.
4.3 Turbulent Developing Flow in a Rotating Pipe

4.3.1 Background Flows in a rotating pipe can be classified as a subset of swirling flow
discussed in the previous section because they are also subject to extra shear strain associated with
the mean azimuthal velocity component. However, swirl intensity does not decay in rotating pipe
flow because angular momentum is continuously imparted into the flow. In the downstream, the
flow approaches to an equilibrium state as the profile of the mean azimuthal velocity approaches to
a rigid-body-rotation distribution.

The rotation effect on a fully-developed pipe flow was studied by White (1964) and
Murakami and Kikuyama (1980). Both studies showed that rotation stabilizes the turbulent flow
field and reduces the flow resistance with a rate increasing as the rotation increases. In other
words, rotation promotes the relaminization of a fully-developed turbulent flow. Experimental
study of the rotation effect on developing turbulent flow in a rotating pipe was carried out by
Kikuyama et al. (1983). They found out that when flow enters a rotating pipe with a uniform
entrance velocity, it is affected by both destabilizing effect created by a large circumferential shear
strain and stabilizing effect due to centrifugal force. Near the entrance, the wall boundary layer is
very thin, and the mean azimuthal velocity has to decrease rapidly from the circumferential velocity
of the wall to zero outside the boundary layer. The flow near the wall is subject to a very high
mean circumferential shear strain, which results in great enhancement of the turbulence production.
Therefore, the near-wall flow in the upstream region is destabilized by the dominated destabilizing
effect. As flow moves to the downstream, the boundary layer becomes thicker and thicker, and the
intensity of the destabilizing effect decreases due to the decrease of the circumferential shear strain.

Far downstream, the flow becomes fully developed, and the fluid inside the rotating pipe rotates as
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arigid body. Since the rigid-body motion does not give rise to additional turbulence production,
the flow is stabilized by the stabilizing effect of centrifugal force. It follows that as the flow
develops along the rotating pipe, the destabilizing effect gives away to the stabilizing effect, and the
flow will pass through a region where both effects are equally important. Hence, the flow in a
rotating pipe is very complicated and provides a severe test for turbulent modeling.

Flow characteristics associated with developing turbulent flows in a rotating pipe are
commonly found in the inlet part of fluid machines, heat exchangers, and cooling system of the
rotors. Therefore, correct modeling of rotating turbulent flows is very important for the design and
development of any rotating machines. Attempts have been made to model developing turbulent
flow in a rotating pipe through the streamline curvature modification with partial success. Most
recently Yoo et al. (1991) used a near-wall Reynolds stress model based on the LRR pressure-
strain model discussed in Section 2 to model the rotating pipe flow. Their model gave fairly good
predictions in comparison with Kikuyama et al.'s (1983) data. In this section, the performance of
the NNWRS model will be assessed by comparing the model predictions with Kikuyama et al.'s
(1983) data and those given by the NWRS model and Yoo et al.'s model.

4.3.2 Numerical considerations The governing equations for rotating pipe flow are the same
as those for swirling flow. At the inlet of the flow domain, the mean axial velocity is determined
from the measurement, and the turbulence quantities are estimated from the inlet mean axial
velocity U,,. More specifically, the turbulent kinetic energy k;, and normal stresses

Ultin, Win,and wwi, are specified according to the following formula:

kin =1U; (4-14a)
i =k, (4-14b)
i = 0.6k, (4-14c)
wwip = 0.4k, (4-14d)

103



where [ is the measured turbulence intensity at the inlet, the dissipation rate is estimated according
to the formula (4-3), and the turbulent shear stresses are approximated by Boussinesq
approximation. Negligible diffusion conditions in the axial direction are imposed at the outlet of
the computational domain, and axisymmetry condition (4-4) is used at the centerline. No-slip
condition requires that at the moving wall W equal to the circumferential velocity of the pipe
surface W,, and other variables, except mean pressure and dissipation rate, be zero. The
dissipation rate € at the moving wall is given by (4-5). Same numerical procedure discussed in
section 4.2 is adopted here for the calculation of developing flow in a rotating pipe.

4.3.3 Results and discussion The developing pipe flow experiments of Kikuyama et al.
(1983) are used to validate our models. Three sets of experimental data with rotation number

N=W, /U, =0,0.5 and 0.83 are available, where U, is the averaged mean axial velocity at the

inlet. The corresponding swirl number § is 0, 0.25, and 0.415, respectively. The entrance
velocity is almost uniform with Reynolds number Re=U, D/ v=6x10* The turbulence
intensity / at the entrance was about 0.3%. Both mean and turbulence flow quantities were

measured at several locations.

The computational domain again is 0.5D (r)x 100D (x) with a 51x 56 grid in radial and
axial directions. The grid is found to be able to give grid independent results. Numerical
computations are carried out for three cases with rotation numbers N =0, 0.5 and 0.83 in
Kikuyama's (1983) experiments. The results for the most severe case, namely N =0.83 case is
presented below to show the models' ability to predict developing turbulent flow in a fast rotating
pipe. For other two smaller rotation number cases, model predictions are in better agreement with
the measurement. The rotation effects on the turbulent kinetic energy is shown as N increases
from O to 0.83.

Model predictions of the mean axial and azimuthal velocity profiles are compared with the
data at the first and last measured locations x/ D = 2.7 and 28.5 in Fig. 4.19a-4.19b. All three
models give good predictions of the mean velocity profiles, and the results given by the NNWRS

and NWRS models are very close. For the axial velocity U, the NNWRS and NWRS models
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give better predictions at the first measured location x/ D = 2.7 than at the last measured location
x/ D = 28.5. For the azimuthal velocity W, the agreement between the predictions given by the
NNWRS and NWRS models and the data is almost the same at these two locations. Our model
predictions of U and W follow the trend of the data with a small deviation. Yoo et al.'s (1991)
model gives slightly better predictions of U and W in terms of magnitude, but not slope. The
measurements in Fig. 4.19 indicate that the boundary layer becomes more developed downstream,
and the mean axial velocity profile at x/ D = 28.5 is close to that in a fully-developed pipe flow.
These features are essentially captured by all three models.

The comparisons for Reynolds stress components at x/D = 2.7 and x/D = 28.5 are
presented in Figs. 4.20-4.25. Turbulent fluctuations (or normal stresses) and shear stresses
spread out into the core region as the destabilizing effect associated with the circumferential shear
strain decreases and the stabilizing effect due to centrifugal force becomes more dominated (cf.
panel a to panel b in Figs. 4.20-4.25). In the near-wall region, all the models overpredict the
turbulent fluctuations (normal stresses) Urms . Vims and w,,., except u,, at x/ D = 2.7 where
the peak value is predicted well by the models (Figs. 4.20 - 4.22). Yoo et al.'s model much more
overpredicts the peak values of the v,,,; than the NNWRS and NWRS models do (see Fig. 4.21a
and 4.21b). Overall, the predicted turbulent fluctuations by the NNWRS and NWRS models agree
slightly better with the measurements than those by Yoo et al.'s model do. The components of the
shear stresses are generally overpredicted by the NNWRS and NWRS models (Figs. 4.23 - 4.25)
except for vw at x/D = 28.5 and uw at x/D = 2.7 (Figs 4.24b and 4.25a). The
performance of Yoo et al.'s model varies depending on the individual component and the measured
location. It gives good predictions of each shear strain component at one location, but either
overpredicts or underpredicts the same component at the other location.

To show how the mean velocity profiles evolve along the pipe from the upstream to the
downstream, we plot the axial and azimuthal velocity components at four different measured

locations: x/ D = 2.7, 9.7, 15.5 and 28.5 in Figs. 4.26a - 4.26b. Note that only the results of
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the NNWRS model and the measurements are compared. Both the axial and azimuthal velocities
have similar profiles at these four different locations. As the flow moves to the downstream, the
boundary layer thickness increases and the variations of U and W across the boundary layer
become less rapid. The NNWRS model follows the trends of the measurements quite well but
with a small offset. Distributions of the turbulent kinetic energy k at the same locations are shown
in Fig. 4.26¢c. As expected, the turbulent kinetic energy k spreads out into the core region
resulting from the increase of the stabilizing effect and the decrease of the destabilizing effect in the
downstream. The NNWRS model replicates this observed phenomenon, but it overestimates the
maximum Kinetic energy and underestimates the spreading rate.

The effects of rotation number N on the mean axial and azimuthal velocity profiles at the last
measured location x/ D = 28.5 are shown in Figs. 4.27a - 4.27b. The NNWRS model gives
better predictions for the moderate rotation number N = 0.5 case than for the high rotation number
N =0.83 case. Both the measurements and model predictions show that the mean axial and
azimuthal velocity components far away from the inlet are not very sensitive to the rotation rate.
Finally, the effects of rotation number N on evolution of the turbulent kinetic energy & are shown
in Fig. 4.28. At the upstream location x/ D = 2.7, the NNWRS model shows an increase of k
with the rotation rate. This is because more turbulent production associated with the more intense
shear strain is generated as rotating rates increases. At x/ D = 5.5, the total kinetic energy for
different rotation numbers are close to each other since the stabilizing and destabilizing effects are
well balanced there. The drop in & at the downstream location x/ D = 28.5 indicates the
stabilizing effect there is dominated, resulting in the decrease of the turbulent kinetic energy with
increasing rotation rate. These predictions are consistent with the experimental measurements

given by Kikuyama et al. (1983).
4.4 Fully-Developed Turbulent Flow in a Rotating Channel

4.4.1 Background For fully developed flow in a spanwise rotating channel with constant

angular velocity Q (Fig. 4.29), the system rotation gives rise to two additional body forces:
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Coriolis force and centrifugal force. However, only the Coriolis force is dynamically important

because the centrifugal force term can be absorbed in the effective pressure

€

1
Py =P-2p(Qr) (4-15)

where P is the stationary pressure and r denotes the distance from the rotating axis. The strength

of the Coriolis force can be measured by a rotation number

0=M , or Ror=2|Q|h , (4-16)
Un Ug

R

which is the relative strength of the Coriolis force to the inertial force. Here U,, is the bulk mean

velocity, A is the half the channel width, and u, is the global friction velocity.
The flow under consideration is driven by an imposed mean pressure gradient,

dP 2
o __Pur (4-17)
dx h

in the streamwise (x) direction. Thus, the turbulence can be treated as homogeneous in the

streamwise (x) and spanwise ( z) directions. In other words, the mean properties and turbulence

statistics vary only in the transverse (y) direction. With the use of effective pressure, the

governing equation for the mean flow is identical to that for non-rotating channel flow, i.e.,

dP _
18 _d[,dU _o (4-18)
p dx dy\ dy

It follows from (4-17) and (4-18) that

1
u2 =—2—(u12,s +u3,) (4-19)

where u; and u,, denote the local friction velocity at the suction side and pressure side,

respectively. When Q>0 (<0), y/h=+1 is the suction (pressure) side and y/h=-1 is the

pressure (suction) side. Without system rotation, the mean flow is symmetric with respect to the

(x,2)-plane at y=0 and u; = ug =ug,.
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In the transport equations for the individual Reynolds stress components, the production

terms associated with mean shear and rotational stress generation are

—JdU;, _—_JU.
— J
Pij = —|:u,~uk a—xk Uiy 87,::' ) (4-20a)

e

Gy = —2Qk[“jumeikm + Ul € jom (4-20b)

respectively. The components of P;; and G; are given in Table 4.3. Since G, vanishes, no

additional turbulence energy is generated directly through the rotational production term G-

Pioneering work on fully developed flow in a channel rotating about a spanwise axis was
carried out by Johnston et al. (1972). Their measurements covered a wide range of rotation
numbers, Ro, from O up to 0.21 with Reynolds number Re ranging from 11500 to 35000. Here
the Reynolds number is defined based on the bulk mean velocity U,, and the channel width 24 as
Re =2U, h/ v. The Coriolis force was found to affect both local and global stability of the flow.
Three stability-related phenomena caused by the Coriolis force were observed or inferred: (1) it can
change the streak bursting rate in the wall-layers; (2) it can suppress the turbulence production near
the suction (stabilized) side; (3) it can develop a large-scale roll cell on the pressure (destabilized)
side.

Theoretical and experimental studies were performed by Nakabayashi and Kitoh (1996) on
low-Reynolds-number, fully developed turbulent flow in a rotating channel. Low-Reynolds-
number flow is found to be more strongly affected by the Coriolis force than high-Reynolds-
number flow. The Coriolis force affects the logarithmic layer and the core region. By dimensional
analysis, they deduced that Reynolds number Re, =u;2/ v and Ro are the two parameters
determining the overall flow structure. The ranges of these two parameters in the experiments they
investigated are 28 < Re, <155 (1700 < Re <10000) and 0 < Ro < 0.055.

Laboratory investigations of turbulence in rotating reference systems are more difficult to
accomplish than most other experiments, simply because the flow apparatus has to be mounted on

a rotating turntable. While fully developed flows are relatively difficult to realize in the laboratory,
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especially in a rotating system, such flows have been attractive objects for numerical study in the
past two decades. Kim (1983) was the first to perform large-eddy simulations (LES) for rotating
channel flow with a moderate rotation number Ro = 0.068, which revealed how the Coriolis force
introduced by the system rotation can stabilize or destabilize turbulence on different sides of the
plates. Miyake and Kajishima (1986) also carried out large-eddy simulations for rotation number
up to 0.2. They presented various statistical turbulence quantities and concluded that in the near-
wall region, the Coriolis force enhances sweep and ejection on the pressure side, while reduces
them on the suction side. However, the rather course grid used made their results less reliable and
the conclusions less convincing.

Kristoffersen and Anderson (1993) performed direct numerical simulations (DNS) of fully-
developed rotating channel flow for rotation number Ro up to 0.50 at Re=5800. Their
simulation results showed that with increasing rotation the damping and augmentation of
turbulence along the suction side and pressure side, respectively, become more significant,
resulting in highly asymmetric profiles of mean velocity and turbulent Reynolds stresses. The
mean velocity profile exhibits an appreciable region with slope 2Q, in accordance with the
experimental observations of Johnston et al. (1972). At Ro = 0.50 the Reynolds stresses vanishes
in the vicinity of the suction (stabilized) side. Because the gird they used, 128 x 128 x 128, is find
enough to resolve all essential scales of the low-Reynolds-number turbulence, their rather complete
data becoine very useful to verify turbulent models for rotating turbulent flow.

A Reynolds stress model is required to model rotating channel flow because of high
anisotropic turbulence caused by the Coriolis force. Second-order turbulence models have been
used to predict rotating channel flow recently. Launder et al. (1987) and Shima (1993) obtained
good agreement with the experimental results of Johnston et al. (1972) and large-eddy simulations
of Kim (1983). Tselepidakis (1991) made an attempt to model the fully developed rotating channel
flow studied by Kristoffersen and Anderson (1993). Very good agreement was obtained with low

rotation number Ro =0.05. However, no results were reported for higher rotation number due to
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numerical stability. He suggested that the problem could be overcome by reconstructing a new

dissipation rate tensor €.

4.4.2 Results and discussion In the present study, the cases studied by Kim (1983) and
Kristoffersen and Anderson (1993) are selected to test our near wall models' ability to predict fully
developed channel flow with spanwise rotation. In Kim's case, the rotation number is Ro = 0.068
(Ro, =1.47) and the Reynolds number is Re, =2U_ h/ v=13800 (where U, is the centerline
mean velocity) (Re ; = 640); in Kristoffersen and Anderson's case the rotation number Ro( Ro,)
varies from 0 to 0.50 (7.55) at Reynolds number Re = 5800 (Re, =194). The iterative scheme
for the fully developed channel flow in Section 3 is adopted here for the calculations of the fully
developed flow in a rotating channel.

The numerical results are presented first for Kim's (1983) case, and then for Kristoffersen
and Anderson's (1993) case. Note that the channel in these two cases rotates in opposite
directions, i.e. >0 in Kim's case, whereas Q<0 in Kristoffersen and Anderson's case.
Accordingly, y/ h=-—1 is the pressure side and y/h=+1 is the suction side in Kim's case,
whereas y/h=-1 is the suction side and y/h =+1 is the pressure side in Kristoffersen and
Anderson's case. The global wall friction velocity u, is used to normalize the flow variables when
variations across the entire channel —-1<y/h<+1 are presented, whereas the local friction
velocities uy, and ug are used in the scaling of computed results whenever the inner coordinate
y™ near the pressure and suction sides, respectively, labels the abscissa. In the computations, two
damping functions, (2-29a) for Kim's case and (2-29b) for Kristoffersen and Anderson's case, are
used in the NWRS model due to the significant difference in Reynolds numbers, whereas same
damping function (2-33) is used in the NNWRS model for both cases.

Figs. 4.30a - 4.30b compare the predicted mean velocity with the LES data given by Kim
(1983) in wall coordinates. The LES data show that the normalized mean velocity U™ lies above
and below the semi-logarithmic law U* =2.5Iny* + 5.5 in the region near the centerline on the

suction side (Fig. 4.30a) and pressure side (Fig. 4.30b), respectively. On the suction side
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(y/ h=+1), the wake component is increased due to the decrease of local friction velocity u, (i.e.
Uy <ug). On the pressure side (y/h=-1), the increased local friction velocity (i.e. Ugy, > Ur)
suppresses the wake component in the velocity profile. Both the NNWRS and NWRS models are
basically able to capture these features; the NWRS model is in better agreement with the LES data
than the NNWRS model does.

Fig. 4.31a plots the normalized mean velocity U /U, distribution between the plates. The
model results are essentially identical and follow the LES data quite well. The data and the model
results show a slight asymmetry in the mean velocity profiles due to the presence of rotation. Both
models give about the same shear stress uv predictions as shown in Fig. 4.31b. Fig. 4.31c shows
that the peak value decreases on the suction side (y/ s = +1) and increases on the pressure side
(y/h=-1) in comparison with the non-rotating case (no shown). Note that although the
rotational production term Gj; does not have a direct contribution to the generation of turbulent
kinetic energy, it affects the mean shear production term P;; through changing the turbulent stress
distributions and the mean velocity gradient, resulting in the redistribution of the kinetic energy &
between the plates. The NWRS model predicts a much higher peak value of k* on both sides
compared with the NNWRS model. Away from the walls, both models give almost the same
predictions, which are slightly overestimated on the suction side and underestimated on the
pressure side. In Fig. 4.31d, the LES shows that in the core region, turbulence is more isotropic
on the pressure side than on the suction side. Both models also show that turbulent fluctuations
are more isotropic (i.e. u,,., v;,, and wy . are closer to each other) on the pressure side.
However, except for u,,,. on the pressure side, model predictions of turbulent fluctuations do not
agree well with the LES data. Overall, the models seem to have the ability to replicate the rotation
effect, but they are less responsive to the influence of the rotation. Further verification for the

models is needed since in this case the rotation number Ro =0.068 is relatively small compared

with its high Reynolds number Re, =13800.
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According to Nakabayashi and Kitoh (1996), with the same rotation number, the rotation
effect is more influential in low-Reynolds-number flow than in high-Reynolds-number flow. To
further examine the rotation effect in the model, computations are carried out for the low-Reynolds-
number case of Kristoffersen and Anderson with rotation numbers Ro=0, 0.01, 0.05, 0.10,
0.15, 0.20, and 0.50 (these values correspond to Ro, =0, 0.15, 0.755, 1.51, 2.265, 3.02, and
7.55, respectively). The calculation for rotation number Ro =0 is to test the code and provide a
reference to identify the rotation effects (Fig. 4.32-4.33). The NWRS and NNWRS models repeat
their performance in fully developed channel flow without rotation. Note that all flow variable
profiles are symmetric about the center plane y =0 (Fig 4.33). In the following presentation, the
mean velocity profiles are shown in the wall and global coordinates for each rotation number,
whereas the turbulence quantities are plotted only in the global coordinate.

Figs. 4.34a - 4.34b plot the mean velocity profiles in the wall coordinates for Ro =0.01.
According to the DNS, the effect of the Coriolis force at this low rotation number can be
considered as a small perturbation to the non-rotating case, and the velocity profiles in the core
region on different sides deviate slightly from the log law U* =2.5Iny* +5.5. The deviation on
the pressure side is more noticeable than that on the suction side. Our model predictions agree very
well with the DNS data on the suction side (Fig. 4.34a). On the pressure side, the NNWRS model
predicts a slight larger mean velocity in the core region compared with the DNS data, whereas the
predictions given by the NWRS model are closer to the DNS data. Predicted mean velocity and
turbulence quantities are further compared with the DNS data in the global coordinate (Fig. 4.35).
The agreement between our model predictions and the DNS data is very close to that in the non-
rotating case (cf. Fig. 4.35 with its counterpart Fig. 4.33). The weak rotation in this case only
causes a small perturbation from the non-rotating state.

The predicted mean velocity profiles and the DNS data for Ro =0.05 are shown in Fig.
4.36. The DNS data show that the rotation effect becomes more pronounced, namely the wake

component is appreciably enhanced on the suction side and is eliminated on the pressure side. This
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is accompanied by the rather significant decrease and increase of the wall fiction velocity on the
suction and pressure sides respectively. The velocity profiles predicted by the NNWRS and
NWRS models, however, only slightly deviate from the law of the wall. Compared to their
predictions for Ro=0.01 (cf. Fig. 4.36 with Fig 4.34), the models are not sensitive to the
increase of rotation. This insensitivity is also observed when mean velocity and turbulence
quantities are plotted in the global coordinate (compare the model predictions in Fig. 4.37 with Fig.
4.35). The DNS data show that the rotation already has a significant influence on the turbulent
field at this rotation number. The peak of the shear stress uv increases on the pressure side but
- decreases on the suction side (cf. Fig. 4.37b with Figs. 4.33b and 4.35b). This is because the
rotational production term G;; (see Table 4.3) in the uv-transport equation is positive near the wall
and therefore tends to reduce the negative value of uv on the suction side and increase it on the
pressure side. Away from the walls, the viscous effect is negligible, and the shear stress profile
becomes linear (see (4-18)). The peak value of the turbulent kinetic energy drops on the suction
side (y/h=-1) and rises on the pressure side (y/h = +1) quite significantly (Fig. 4.37c¢); the
peaks of turbulent fluctuations v,,,; and w} _in the vicinity of the suction side tends to disappear
(Fig. 4.37d). The models do not predict such features. The rotation number Ro = 0.05 in this
case is close to Ro=0.068 in Kim's case. Comparing the LES data in Figs. 4.30-4.31 and the
corresponding DNS data in Figs. 4.36 - 4.37, we find that the rotation effect is more influential in
this low-Reynolds-number case (Re, =194) than in the high-Reynolds-number Kim's case
(Re; =640), which is in accordance with Nakabayashi and Kitoh (1996).

As the rotation number increases up to Ro = 0.20, comparisons between the models' results
and the data are qualitatively similar to those for Ro = 0.05 with some quantitative differences.
The comparisons for mean velocity profiles in the wall coordinates are presented in Figs. 4.38,
4.40, and 4.42 for rotation number Ro =0.10, 0.15 and 0.20, respectively, whereas those for

turbulence quantities can be found in Figs. 4.39, 4.41, and 4.43.
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At Ro =0.50, the difference in the mean flow and turbulent field on the suction side and
pressure side becomes striking. The DNS shows that the mean velocity profile is close to the
linear law U =y* on the suction side, whereas an anomalous behavior is observed on the
pressure side: the profile diverges from the linear law at y* =5. The NNWRS and NWRS
models seem to be able to capture these features, although the predicted profiles deviate from the
data. Unlike those lower rotation number cases ( Ro <0.5) (see Figs. 4.34b, 4.36b, 4.38b,
4.40b, and 4.42b), the difference in the predicted mean velocity profiles is quite large on the
pressure side in this case. The NWRS model results are in a better agreement with the data. In the
global coordinate (Fig. 4.45a), a linear region in the DNS mean velocity profile is observed. Both
models are able to predict this characteristic flow region, though the predicted slope is smaller than
the expected 2€Q as indicated by the data. The predicted shear stress uv shows a better agreement
with the data in this case than in all lower rotation number cases except for Ro = 0.01 case (cf.
Fig. 4.45b with Figs. 4.37b, 4.39b, 4.41b, and 4.43b). More pronounced rotation effects are
also observed in the kinetic energy and turbulence fluctuations at Ro = 0.50 (Figs. 4.45¢ - 4.45d).
According to the data, on the suction side, the strong rotation effect has eliminated the peaks of the
kinetic energy ¥ and the normal stress in the wall normal direction vi ., and tends to eliminate
the peaks in the other two normal stresses u,,,; and wj,,.. In the core region, v} _ is dominant
among the three normal stress components. The NNWRS and NWRS models have shown a more
significant rotation effect at Ro=0.50 in comparison with the lower Ro cases. More asymmetry
due to rotation in the predictions is observed at this rotation number. However, the rotation effect
predicted by the models are still much weaker than that shown in the DNS. For instance, the peaks
in the kinetic energy k¥ and normal stresses uj,,, vh., and w’ near the suction side still
remain.

To show more clearly the variations of the predicted mean velocity as the rotation rate
increases, we plot the mean velocity profiles predicted by the NNWRS model for different Ro in

the wall coordinates together in Fig. 4.46a and Fig. 4.46b. The mean velocity profiles on the
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suction side lie above the profile for the non-rotating case in the semi-logarithmic region. The
profile for small Ro still exhibits a logarithmic region. As Ro increases, the profile has a more
laminar-like shape and approaches the linear law U™ = y*. Correspondingly, the mean velocity
profiles on the pressure side lie below the profile for Ro=0. These profiles still exhibit the
characteristic turbulent semi-logarithmic shape, but with a slope that decreases as Ro increases. At
the highest rotation rate ( Ro = 0.50), an anomalous behavior is observed.

Finally, Fig. 4.47 shows the effect of rotation on local wall friction velocities u,, and Uy
The NNWRS and NWRS models follow the trend indicated by the DNS data, namely the wall
friction velocity decreases on the suction side and increases on the pressure side as the rotation rate
increases. The model results, however, show a weaker rotation effect on the wall friction

velocities.
4.5 Concluding Remarks

The performance of the NNWRS model in predicting complex turbulent flow with swirl and
rotation is examined in this section. More specifically, we apply the model to swirling pipe flow,
developing rotating pipe flow, and fully developed channel flow with spanwise rotation and
compare the model results with available experimental and LES/DNS data. The complexity of
these flows provides severe tests for our models. In swirling pipe flow, the NNWRS model gives
reasonable predictions for flow with no reverse flow region, whereas for flow with a reverse flow
region, the model predicts a much smaller reverse flow region than that observed in the
experiments. In developing flow along a pipe rotating around its axis, the NNWRS model is able
to capture the flow pattern subject to both destabilizing effect resulting from the mean
circumferential shear strain and stabilizing effect due to the centrifugal force. In the fully
developed channel flow with spanwise rotation, at low rotation rate, the model predictions agree
with the LES/DNS data. As the rotation rate increases, the model underestimates the rotation
effect, which causes the augmentation and damping of the turbulence along the pressure and

suction sides, respectively. The NWRS model behaves similarly as the NNWRS model in all the
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cases considered. This implies that the near-wall modifications in the turbulence models become
less important for complex flows such as swirling and rotating flows. Further improvement on the
modeling is needed for a better agreement with the experimental data and the direct numerical/large-
eddy simulations, in particular in the reverse flow region of the swirling pipe flow and semi-
logarithmic region of the rotating channel flow where the Coriolis force is important. In the next

section, the NNWRS model is further examined for turbulent flows with complex geometry.
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Table 4.1

Comparison of shear strain rates in swirling and parallel flows

Sij Swirling flow Parallel flow
5 £ o
o ox dx
A% oV
Srr or or
1{ oW 1%
Sgg ;(—85 + V) -
| M) |
2\ dr OJx or ox
S I(IBV W W] l(lc?V)
r6 D I iy S|l =55
2\rdé or r 2\ r 06
s 1(13(/ aw) 1(13U)
X6 P vt s = v
2\r d0  ox 2\r d6

Table 4.2 Swirling flow characteristics

Tangential Angular Vortici
velocity velocity v
Forced % _
vortex | W=¢c*r | o=w/r 2w
Free _
Vortex | W=¢/r - 0
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Table 4.3  Production terms in fully developed channel with spanwise rotation

ij 11 22 33 12
P —2uvdU 1 dy 0 0 —woU / dy
G 4Quv —4Quv 0 —2Q(uu - vv)

Note: P; and G;; are the production terms due to mean shear and rotation, respectively, and the

expressions are:

and

Glj = —ZQk [ujumeikm + uiumejkm].
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Fig. 4.1 Typical azimuthal velocity profile in a swirling pipe flow.
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Fig. 4.2 Control volume centered at grid point P.
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Fig. 4.3a Control volume for mean velocity in the axial direction (U).
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Fig. 4.3b Control volume for mean velocity in the radial direction (V).
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Fig. 4.6 Comparison between the predicted and the measured swirl number for
Weske and Sturov's (1974) case.
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Fig. 4.7a Comparison between the predicted and measured mean axial velocity profiles at
measured location x/ D =5.1.

Fig. 4.7b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location x/ D =5.1.
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Fig. 4.7c Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D =S5.1.
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Fig. 4.7d Comparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location x/ D =5.1.
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Fig. 4.7e Comparison between the predicted and measured turbulent fluctuation in the radial
direction at measured location x/ D =5.1.
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Fig. 4.7f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x/ D=35.1.
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Fig. 4.8a Comparison between the predicted and measured mean axial velocity profiles at
measured location x/ D =20.0.
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Fig. 4.8b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location x/ D =20.0.
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Fig. 4.9a Comparison between the predicted and measured mean axial velocity profiles at

measured location x/ D =50.0.
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Fig. 4.9b Comparison between the predicted and measured mean azimuthal velocity profiles at

measured location x/ D =50.0.
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Fig. 4.9c Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D =50.0.

0.3+
025 o Weske & Sturov (1974); /D = 50.0
NWRS
0.2 NNWRS
ms e

0 0.2 0.4 0.6 0.8 1
1-2t/D

Fig. 4.9d Comparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location x/ D = 50.0.
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Fig. 4.9¢ Comparison between the predicted and measured turbulent fluctuation in the radial
direction at measured location x/ D =50.0.
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Fig. 4.9f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x / D = 50.0.
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Fig. 4.12 Predicted swirl number for Kitoh's (1991) case and its comparison with the experimental
data and the empirical formula given by Kitoh (1991).

134



AL AL L A L (L AN B E RO BN N B A B NN AN S S S

0 0.2 0.4 0.6 0.8 1
1-2t/D

Fig. 4.13a Comparison between the predicted and measured mean axial velocity profiles at
measured location x/ D =12.3.
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Fig. 4.13b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location at x / D =12.3.
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Fig. 4.13c Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D=12.3.
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Fig. 4.13d Comparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location x/ D =12.3.
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Fig. 4.13e Comparison between the predicted and measured turbulent fluctuation in the radial
direction at measured location x/ D=12.3.
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Fig. 4.13f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x/ D=12.3.

137



1.5

0] o Kitoh (1991); x/D = 19.0 °
4 NWRS
1 NNWRS ©
9 o]
-0.5 LR LA (L L A L AL R L S AL AL A S B
0 0.2 0.4 0.6 0.8 1
1-2t/D
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Fig. 4.14b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location x/ D =19.0.
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Fig. 4.14c Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D=19.0.
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Fig. 4.14dComparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location at x/ D =19.0.
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Fig. 4.14e Comparison between the predicted and measured turbulent fluctuation in the radial
directionat x/ D=19.0.
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Fig. 4.14f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x/ D =19.0.
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Fig. 4.15a Comparison between the predicted and measured mean axial velocity profiles at
measured location x / D =25.7.
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Fig. 4.15b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location x/ D =25.7.
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Fig. 4.15¢ Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D=25.7.
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Fig. 4.15d Comparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location x/ D =25.7.
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Fig. 4.15e Comparison between the predicted and measured turbulent fluctuation in the radial
direction at measured location x/ D =25.7.
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Fig. 4.15f Comparison between the predicted and measured turbulent fluctuation in the azimuthal
direction at x/ D =25.7.
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Fig. 4.16a Comparison between the predicted and measured mean axial velocity profiles at
measured location x/ D=32.4.
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Fig. 4.16b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location x / D=32.4.
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Fig. 4.16c Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D=32.4.
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Fig. 4.16d Comparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location x/ D =32.4.
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Fig. 4.16e Comparison between the predicted and measured turbulent fluctuation in the radial
direction at measured location x/ D =32.4.
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Fig. 4.16f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x/ D=32.4.
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Fig. 4.17a Comparison between the predicted and measured mean axial velocity profiles at
measured location x/ D =39.0.

2.
151 o Kitoh (1991); /D = 39.0
W
Un 1]
0.5¢
1
]
0 N
0 0.2 0.4 0.6 0.8 1
1-2t/D

Fig. 4.17b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location x/ D =39.0.
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Fig. 4.17c Comparison between the predicted and measured turbulent kinetic energy at measured
location x/ D =39.0.
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Fig. 4.17d Comparison between the predicted and measured turbulent fluctuation in the axial
direction at measured location x/ D =39.0.
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Fig. 4.17e Comparison between the predicted and measured turbulent fluctuation in the radial
direction at measured location x / D =39.0.
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Fig. 4.17f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x/ D =39.0.
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Fig. 4.19a Comparison between predicted and measured axial mean velocity at x / D =2.7 and
28.5 (U, is the axial mean velocity at the pipe centerline).
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Fig. 4.19b Comparison between predicted and measured azimuthal mean velocity at x/ D=2.7
and 28.5 (W, is the azimuthal mean velocity at the pipe wall).
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Fig. 4.20a Comparison between predicted and measured turbulent fluctuation in the axial direction
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Fig. 4.20b Comparison between predicted and measured turbulent fluctuation in the axial direction
at x/ D=28.5.
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Fig. 4.21a Comparison between predicted and measured turbulent fluctuation in the radial direction
at x/D=27.
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Fig. 4.21b Comparison between predicted and measured turbulent fluctuation in the radial direction
at x/ D=28.5.
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Fig. 4.22a Comparison between predicted and measured turbulent fluctuation in the azimuthal
directionat x/ D=2.7.

0.1
N=0.283
o  Kikuyama et al. (1983); x/D = 28.5
0.08 —-..— Yoo etal. (1991)
AN e NWRS

——— NNWRS

O IRRRSAREERE AR N RN N AR RRA RN R ]

0 0.2 0.4 0.6 0.8 1
1-2t/D

Fig. 4.22b Comparison between predicted and measured turbulent fluctuation in the azimuthal
direction at x/ D =28.5.
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Fig. 4.23a Comparison between predicted and measured turbulent shear stress uv at x/ D=2.7.
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Fig. 4.23b Comparison between predicted and measured turbulent shear stress uv at x/ D = 28.5.
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Fig. 4.24a Comparison between predicted and measured turbulent shear stress vw at x/ D =2.7.
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Fig. 4.24b Comparison between predicted and measured turbulent shear stress vw at
x/ D=285.
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Fig. 4.26a Comparison between the predicted and measured axial mean velocity at four different
axial locations.

Fig. 4.26b Comparison between the predicted and measured azimuthal mean velocity at four
different axial locations.
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Fig. 4.26c Comparison between the predicted and measured turbulent kinetic energy at four
different axial locations.

159



)
J

—

y 087
U, |
0.6 7
0.4 7
0.2

O T T T T T T T T T T

0 0.2 0.4 0.6 0.8 1

1-2t/D

Fig. 4.27a Comparison between the predicted and measured rotation effects on axial mean velocity
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Fig. 4.27b Comparison between the predicted and measured rotation effects on azimuthal mean
velocity for different rotation numbers at x / D =28.5.
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Fig. 4.28 Comparison of the predicted rotation effects on turbulent kinetic energy at various axial
locations.
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Fig. 4.29 Sketch of coordinate system and computational domain for a fully developed flow in a
rotating channel.
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Fig. 4.31 Comparison between model predictions and LES data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.32 Comparison between predicted and DNS mean velocity in wall coordinates
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Fig. 4.33 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.34 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side (U* =U/u,, y© =(1+ y)u,, / v) and (b) pressure side
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Fig. 4.35 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.36 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side and (b) pressure side for Ro = 0.05.
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Fig. 4.37 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.38 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side and (b) pressure side for Ro =0.10.
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Fig. 4.39 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations
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Fig. 4.40 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side and (b) pressure side for Ro =0.15.
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Fig. 4.41 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.42 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side and (b) pressure side for Ro =0.20.
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Fig. 4.43 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.44 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side and (b) pressure side for Ro = 0.50.
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Fig. 4.46 Predicted mean velocity profiles for different rotation numbers in wall coordinates on (a)
suction side and (b) pressure side.
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5. VALIDATION AGAINST TURBULENT FLOWS WITH
COMPLEX GEOMETRIES

5.1 Introduction

The NNWRS model is developed for complex turbulent flows, in particular for flows with
complex geometry. Two-dimensional flow over a backward-facing step and three-dimensional
flow in a square duct are typical complex flows resulting from the presence of multiple walls.
Complex flow phenomena such as recirculation, reattachment, and boundary layer re-development
to a fully-developed state are observed in the plane backward-facing step flow (Fig. 5.1). These
flow features all result from the existence of the step. In a straight square duct (Fig. 5.10), the
local flow structure is dominated by a transverse mean flow commonly known as secondary flow
of the second kind induced by the presence of the comners. The mean transverse secondary flow
consists of eight streamwise vortices, two counter-rotating in each corner, with the flow toward the
corners from the duct center along the corner bisector, and toward the duct center along the
bounding wall and wall bisector. In the following sections, two-dimensional backward-facing step
flow and three-dimensional flow in a square duct are used as the testing cases to verify the

NNWRS model's ability to predict flows with complex geometry.

5.2 Two-Dimensional Flow Over a Backward-Facing Step

5.2.1 Background Numerous attempts have been made to model two-dimensional

backward-facing step flow by using various Reynolds stress models. Errors up to 50% ~ 100%

between the model predictions of skin friction coefficient C r =27, /(pU, 3) and available data are
often observed (So et al. 1988; Ko and Durbin 1994; Lien and Leschziner 1994). Here, U, is the

bulk mean velocity at the entrance, p is fluid density and 7,, is the wall shear stress. One finding

in the prediction of C ¢ by near-wall second-order models employing wall normals in the near-wall

corrections is that the models tend to overshoot C; in the adverse pressure gradient region after

the reattachment point. However, no such overshooting is observed in predictions given by those

high-Reynolds-number models invoking wall functions to satisfy the boundary conditions (So et
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al. 1988) and Durbin's Reynolds stress model (1993). In Durbin's model, redistributive terms in
the Reynolds stress equations are modeled by an elliptic relaxation equation to represent strongly
non-homogeneous effects produced by the presence of walls, and no damping functions are
needed (hereafter Durbin's model is referred to as the elliptic-relaxation model). Thus, the

overshooting of Cy persisting in the near-wall Reynolds models is speculated to be caused by the

use of wall normals in the near-wall correction terms. Since no wall normal is used in the

NNWRS model, the comparison between the NNWRS model predictions of C r and those given

by the NWRS model will shed light on whether the use of wall normals is responsible for the
overshooting of C in the near-wall turbulence modeling.

5.2.2  Numerical implementations and boundary conditions The TEACH code and
corresponding numerical procedures discussed in Section 4.2.2 are adopted for the current two-
dimensional numerical computations in Cartesian coordinates. Only half of the expanded channel
is considered since the flow is symmetric about the centerline. The computations are conducted in
a domain 50A x 64 shown in Fig. 5.2 with a grid distribution 91x 81 in the streamwise and
transverse directions, respectively. The grid is clustered at the inlet and the near-wall regions.
Finer grid 131x 151 was tested to give essentially identical results. Thus, grid 91x 81 is used in
the final computations. The convergence criterion is again given by (4-12).

The model equations for two-dimensional backward-facing step flow are elliptic-type
equations. To solve these equations in the (x, y)-plane, boundary conditions at the inlet and outlet
of the computational domain, along the centerline of the expanded channel and the step walls are
required. The mean velocity and the turbulent statistics at the inlet (x = 0) are provided by the
available DNS data. Negligible diffusion boundary conditions are specified at the outlet
(x =50h), i.e.

32U, V, uu, w, ww, wv, €) _

ox?

0 . (5-1)

Along the step walls all the variables are zero according to the no-slip condition except the

dissipation rate, which is given by
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e=2v ok :
ox y

(5-2)

along the vertical wall (x = 0) and by

2
£= 21)(%/5) , (5-3)

w

along the horizontal wall (y=0). Symmetry conditions are applied at the centerline (y = 6h)

which yield
O, uu, v, ww, E) i Veim=0 . (5-4)
dy
5.2.3 Cases studied and comparisons with data Both numerical and experimental study has

been carried out for the same backward-facing step flow (Le et al. 1993; Jovic and Driver 1993)
with Re, =U,h/ v = 5,100 and the expansion ratio 6 / h=1.2, where & is the boundary layer
thickness and 4 is the step height. Detailed distributions of skin friction coefficient Cy, wall
pressure coefficient Cp =2(P - P,) /pUg' (where P is the wall static pressure along the
streamwise direction and P, is the wall static pressure at x = 0), mean velocity U, kinetic energy
k, and turbulent Stresses ,,,, Vyms» Wyms» @nd uv at several downstream locations were given.
The same case is used to test our models.

Fig. 5.3 shows the flow pattern predicted by the NNWRS model. As a result of flow
separation, immediately after the step, a primary cell and a corner cell rotating in opposite
directions are generated. Further downstream, the flow develops into a plate boundary layer flow.
The NWRS model predicts a similar flow pattern (no shown). Predicted friction coefficient C Ix
DNS results and measurements are compared in Fig. 5.4. The length between two zero crossing
points of C; is the recirculation region in the streamwise direction. The first zero crossing point
signifies the beginning of the reverse flow. The comer cell locates between the step corner and the
first zero crossing point of C;. The NWRS model predicts the length of the corner cell is about

2h, which agrees with the DNS prediction, whereas the NNWRS model gives a slightly smaller
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length. Durbin's elliptic-relaxation model predicts the smallest corner cell length among the three
turbulent models. The second zero crossing point of C; is the mean reattachment point defined as
the location of zero wall shear stress. The DNS and measurements show the flow has a
reattachment length of 64, which is also predicted by both the NNWRS and NWRS models. The
elliptic-relaxation model, however, overpredict the reattachment length, which is 6.64. The
maximum friction coefficient (IC,l) in the reverse flow region is predicted well by the NNWRS
and NWRS models, but it is underpredicted by the elliptic-relaxation model. After the reattachment
point, the elliptic-relaxation model follows the DNS data and measurement quite well, although
underpredicting C slightly. The overshooting of C; in Reynolds-stress models mentioned by So
et al. (1988) is also observed in the NNWRS model. This indicates that wall normals used in the
near-wall corrections in the NWRS model are not the culprit for the overshooting. Further
investigation is needed to find out the cause for this peculiar overshooting behavior in the Reynolds
stress models.

Fig. 5.5 compare the wall pressure coefficient Cp. Model predictions and data all show the
wall pressure along the horizontal step wall first slowly decreases from P, (indicating a favorable
pressure gradient), and then rapid increases at some location in the recirculation region (indicate an
adverse pressure gradient). It continues to increase and approaches to a constant as the boundary
layer redevelops in the downstream. Contrary to their prediction of Cy, the predictions of Cp
given by the NNWRS and NWRS models agree very well with both DNS data and measurements,
whereas the elliptic-relaxation model underpredicts Cp in adverse pressure gradient region.

Fig. 5.6 shows the comparison of normalized mean velocity U =U/u, in the wall
coordinate y+ =u,y/ v at three downstream locations after the reattachment point: x/h = 10, 15,
and 19. The log-law and linear law are also included for comparison in the figure. The non-

dimensional mean velocity profiles at these locations are predicted well by the elliptic-relaxation

model, but underestimated by the NNWRS and NWRS models. This is consistent with the model
predictions of the friction coefficient C; after the reattachment (Fig. 5.4). The DNS data and
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measurements show that the log region in the velocity profile at location x/h = 10 is very small
and the intercept with U™ -axis is also much smaller than 5.4 (Fig. 5.6a). As the flow develops
further downstream, the length of log-law region increases and U* becomes closer to the log law
(cf. Fig. 5.6a with Figs. 5.6b and 5.6c). The deviation of the velocity profile U™ from the log-
law may be due to the strong streamwise adverse pressure gradient (Nagano et al. 1991). It may
also result from the non-equilibrium effects persistent after the reattachment. Further downstream,
the adverse pressure gradient decreases, and the mean velocity profile U™ becomes closer to the
log-law.

The performance of the models are further examined by comparing the model predictions of

the streamwise mean velocity U and turbulent statistics (including kinetic energy &, normal

SUTESSES Uppgs Vpmss Wyms» and shear stress uv) with the DNS data and measurements in the global
coordinate at locations x/h =4, 6, and 10 (Figs. 5.7-5.9). Note that the location of the y axis in

these figures is shifted for different measured locations. Fig. 5.7 plots the mean velocity profile

U/U, versus y/h at x/h=4, 6, and 10. It shows that U experiences rapid changes in the
near-wall region and approaches a constant as y / > 2. Unlike their predictions of U ¥ in the wall
coordinate y*, the NNWRS and NWRS models give better predictions of U/ U, in the global
coordinate than the elliptic-relaxation model does (cf. Fig. 5.7 with 5.6). In the near-wall region,
all three models predict a negative U at x / h =4, which agrees with the data. This confirms that
location x/ h =4 indeed is inside the reverse flow region determined from the friction coefficient
Cy (see Fig. 5.4). At x/h=6, the elliptic-relaxation model predicts a small negative U in the
inner layer, whereas the NNWRS and NWRS models predict a small positive U there. This
indicates that the reverse flow region ends and reattachment begins near x/h=6. After the
reattachment point, at x / A =10, all the models predict a positive U across the expanded channel,
the NWRS and NNWRS models follow the data better than the elliptic-relaxation model does.

The predicted turbulent kinetic energy k is compared with the DNS data in Fig. 5.8. Note

that Jovic and Driver (1993) did not report the measured normal turbulent fluctuation w,,,, so the

measured kinetic energy k is not available. The mixing layer type structure in the flow separation
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region behind the step significant enhances the turbulent production (Jovic and Driver 1993),
resulting in high kinetic energy peak. As flow moves to the downstream, turbulence decays and
the peak of the kinetic energy decreases. Compared with the DNS data, the NNWRS and NWRS
models give pretty good predictions of k, although the NNWRS model slightly overpredicts the
peak of k at x/h =06 and 10, and the NWRS model underestimates the peak at x/h=4. The
elliptic-relaxation model underpredicts & at all three locations. The comparisons of turbulent
normal StreSSes Uy, Vyms» Wrms and shear stress uv at the same locations are shown in Fig. 5.9.
Overall, the elliptic-relaxation model given better predictions of turbulent stresses in the near wall

region than the NNWRS and NWRS models, but the NNWRS and NWRS models outperform the

elliptic-relaxation model in the outer region. The peak value of u,, is overestimated by the

NNWRS and NWRS models, whereas the peak value of w,,  is underpredicted by the elliptic-

relaxation model.

5.3 Three-Dimensional Flow in a Square Duct

5.3.1 Background Turbulent flow in a square duct is characterized by the existence of
secondary flow of the second kind (as classified by Prandtl) in the plane perpendicular to the
streamwise direction. This kind of secondary flow in a non-circular straight duct is created by
turbulent motion. Although relatively weak (2-3% of the streamwise bulk velocity), its effects on
wall shear stress distribution, heat transfer rates, or transport of passive tracers are quite significant
(Demuren 1990). Being of considerable engineering interests, turbulent flow in a straight non-
circular duct has been the subject of many experimental and numerical investigations (Demuren
and Rodi 1984). Systematic measurements of flow in a non-circular straight duct have been
carried out by Gessner's group (Po 1975; Lund 1977; Eppich 1982; Gessner and Emery 1981).
The farthest measured location in their experiments away from the entrance is 84 D,,, where D, is
the hydraulic diameter of the duct. According to the measurements, flow at this location is already

fully developed. Similar experiments were also conducted in a duct with a length shorter than

84 D, (Melling and Whitelaw 1976; Launder and Ying 1972). Although Brundett and Baines
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(1964) carried out measurements as far as 260 D, from the entrance, where the flow is fully

developed, the inaccurate method used to measure the turbulent stresses made their measurements
less reliable.

Direct numerical simulation provides an alternative approach to study the fully developed
square duct flow at low Reynolds numbers. Recently, Huser and Biringen (1993) and Gavrilakis
(1992) carried out direct numerical simulation for square duct flow at Reynolds number
Re, =U,D, / v = 10,320 (U, is the bulk velocity in the streamwise direction) and Re, = 4,410,
respectively. Although the Reynolds numbers in the DNS are much lower than those in the
experiments mentioned above, it appears that the mechanisms driving the comer secondary flow at
disparate Reynolds numbers are similar. Huser and Biringen (1993) showed that the low-
Reynolds-number effects are manifested in the reduction of the distance from the vortex centers to
the corner and the reduction of the secondary flow near the wall bisector compared to high-
Reynolds-number experiments. Gavrilakis (1992) also found out that viscous effects are quite
important in the transportation of mean vorticity in low-Reynolds-number flow, whereas they are
important only in the region very close to the corner in high-Reynolds-number flow (Demuren and
Rodi 1984).

The origin of the secondary motion can be identified through analyzing the streamwise
vorticity development along the duct. The mechanisms which cause streamwise vorticity to
develop in turbulent flow along a corner are responsible for the initiation of the secondary flow.
Following Prandtl's (1926) original idea on the secondary motion, Einstein and Li (1958) carried
out a rigorous analysis to show that the gradients of Reynolds stresses are the actual source of the

secondary motion. For a fully developed incompressible flow, the mean streamwise vorticity Q,

1s governed by

0, 9, I (= 3\ [ P\ (dQ, JQ,
v dy W 07 _8yaz(w _v) (? 52— v _8_yT+ 0z* ’ 4-2)

where
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T od oy (5-6)

In (5-5), the terms on the left-hand side represent the convection of the streamwise mean vorticity
in the transverse plane; the first two terms on the right-hand side express the influence of the
turbulent stresses on the production or destruction of the streamwise vorticity; and the last term on
the right-hand side is the viscous-damping term. The two turbulent-stress terms are found to be
the dominant terms, and it is the difference between these two relatively large terms that drives the
weak secondary motion (Demuren and Rodi 1984). This implies that modeling the secondary
motion in a duct requires an anisotropic turbulence model.

Many attempts have been made to calculate the flow in a non-circular straight duct by using
algebraic models or Reynolds stress models. The algebraic models can be obtained from the
Reynolds stress models by neglecting the convection and diffusion terms. Most computations
were carried out by using algebraic turbulence models (Launder and Ying 1973; Gessner and
Emery 1981; Gosman and Rapley 1980; Naot and Rodi 1982; Demuren and Rodi 1984).
Although the algebraic models can give reasonable overall predictions of secondary motion by
tuning the model parameters, the models themselves do not correctly reflect the real physical
processes (Demuren and Rodi 1984). Among the few applications of the Reynolds stress models
to flow in a non-circular duct, wall functions were used to satisfy the boundary conditions (Naot et
al. 1974; Reece 1976; Launder and Li 1994). The correct modeling of near-wall turbulence is
crucial to the reproduction of the secondary flow in wall-bounded duct flow. Therefore, square
duct flow provides a severe case to test the correctness of turbulent modeling of the wall effects.
In addition, since the flow is bounded by multiple walls and has two inhomogeneous directions, it

is also an ideal case to show the advantages of the wall-independent NNWRS model.

5.3.2 Cases studied The high-Reynolds-number case (Re, =250,000) investigated by

Gessener's group in the laboratory and the low-Reynolds-number case (Re, =10,320) studied by

Huser and Biringen (1993) using DNS are selected to test our turbulence models for square duct

flow. Through the continuous effort of Gessener's group, fairly complete experimental data are
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available for three-dimensional turbulent flow in a square duct at Re, =250,000. These data
include mean velocities in streamwise and transverse directions, wall shear stress, and the turbulent
stresses along both wall and corner bisector at streamwise locations x / D, = 8, 40 and 84. At

location x / Dy, = 84, the flow is fully developed (Gessener and Emery 1981). These reported data

can be found in Gessener et al. (1979, 1991, 1993) and Gessner and Emery (1981). Hereafter this
high-Reynolds-number case is referred to as Gessner and Emery's (1981) case. In Huser and
Biringen's (1993) case, the flow is fully developed, and detailed DNS data are available. These
two cases together will demonstrate the advantages of wall-indepent NNWRS model for flows
with multiple walls and should complement the turbulence model validations over a wide range of
Reynolds numbers for flow in developing region as well as in fully developed state.
5.3.3 Numerical procedure and boundary conditions The coordinate system and
computational domain for a quarter of the square duct are shown in Fig. 5.10. Three-dimensional
parabolic marching scheme of Patankar and Spalding (1972) is adopted to solve the governing
equations. This numerical scheme assumes that the streamwise mean velocity is determined by the
averaged pressure in the plane perpendicular to the streamwise axis, and iterations are therefore
carried out in the transverse plane. At fixed streamwise location ( x), the discretization procedure
is similar to that described in Section 4 for swirling flow, and a line-by-line iterative scheme is
used to solve the tridiagonal matrix in alternating directions. SIMPLEC algorithm (modified from
SIMPLE) is adopted to link the pressure field with the velocity field. Fig. 5.11 shows the grid
distribution of 91x 91 in the lower left quadrant of the duct in the (y, z)-plane. The grid points
are clustered near the walls and 91x 91 is found to be fine enough for the cases studied. The
marching step size increases progressively from 0.004 D, at the entrance (x =0) to 0.04 D,, at
downstream location x / D, = 100.

The inlet (x =0) conditions determine the development of the flow in the square duct
because the governing equations are of parabolic-type. At the inlet, the mean flow in the core
region is assumed to be uniform with turbulence intensity I =0.35%. Near the walls the flow

field is obtained from the flat-plate boundary layer theory with relative boundary layer thickness
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0/ a=0.02 on the duct midplane (y = @), where § is the boundary layer thickness and a is the
length of the wall bisector (see Fig. 5.10). The secondary velocities V and W, and turbulent
shear stress vw are set to zero at the inlet. All the variables are specified such that their iso-
contours are parallel to the duct walls and have a square shape to give symmetric distributions
about the corner bisector. No outlet conditions are needed for this parabolic problem. Symmetry

conditions are used at the wall bisectors (y = a, z = a) , namely

AU, W, uu, v, ww, uw, €)

o

AU, V, uu, v, ww, uv, €)

oz

=0 ,and V=uv=ww=0 ,at y=a |, (5-7a)

=0 ,and W=uw=w=0 ,at z=a |, (5-7b)

and no-slip boundary conditions require all the variables be zero at the walls (y = a, z = a) except

for the dissipation rate, which is specified as

2
8=2U(M) ,at y=0 | (5-8a)
» ),
2
£=2v(ﬂ] ,at z=0 . (5-8b)
Jz
w
5.3.4 Results and discussion The model-data comparisons are presented first for the case of

Huser and Biringen (1993) for fully developed flow at low Reynolds number and then for the case
of Gessner and Emery (1981) for developing flow at high Reynolds number. Model predictions
for the low Reynolds number case show that the flow at x/ D, = 84 already reaches the fully
developed state since no more change is observed further downstream. Therefore, the model
results at x / D, = 84 are used to compare with the DNS data given by Huser and Biringen (1993)
for the fully developed flow.

Fig. 5.12 displays the secondary flow velocity vectors predicted by the NNWRS model,
revealing two streamwise, counter-rotating, and symmetric (with respect to corner bisector)
vortices in the corner. The flow on the transverse plane moves towards the corner along the corner

bisector ( y = z), and by virtue of mass continuity, it moves away from the corner along the walls
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(y=0 and z=0) and towards the center of the duct along the wall bisectors (y=a and z=a).
This predicted flow pattern is very similar to that shown in Huser and Biringen (1993), with the
centers of the vortices shifted slightly away from the corner. The vortex centers in Fig. 5.12 are
located at (y = 0.25a, z = 0.55a) and (y = 0.55a, z = 0.25a), whereas their counterparts predicted
by the DNS are located at (y = 0.2a, z=0.4a) and (y = 0.4a, 7 = 0.2a)

Fig. 5.13 shows the isotachs (lines of constant streamwise mean velocity in ( y, z)-plane) of
U /U, (U, is the mean velocity at the centerline of the duct) predicted by the NNWRS model.
The isotachs are bent toward the corner with a milder curvature near the corner bisector compared
with those isotachs shown in Huser and Biringen (1993); the predicted isotachs close to the walls
are also flatter. Similar secondary flow pattern predicted by the NWRS model is observed (not

shown).

The comparison between the predicted normalized wall shear stress 7, /7, (7T, is the
average value of 7,, over the walls) and the DNS data along one wall is shown in Fig. 5.14. The
7, / T,, given by the NWRS model is much overpredicted near the corner, but agrees reasonably
well with the DNS data away from the corner. On the other hand, the 7, / T, predicted by the
NNWRS model follows the DNS data quite well from the corner to the location of the first peak in
the DNS data; further away from the corner, the NNWRS model slightly overpredicts the wall
shear stress. The predicted mean streamwise velocity profiles U along the wall bisector (y =a)
are plotted in Fig. 5.15 and compared with the DNS data. Both models give very good predictions
of the streamwise mean velocity U .

In Fig. 5.16, the predicted secondary velocity V along the wall and corner bisector are
compared with the DNS data. Both models overestimate V along the wall bisector except in the
region near the center of the duct (Fig. 5.17a); the results given by the NNWRS model are closer
to the data compared with those predicted by the NWRS model. Along the corner bisector (Fig.
5.17b), although the NNWRS model follows the data near the corner and the center quite well, it
predicts a secondary velocity profile with a much smaller peak. On the other hand, the NWRS

model predicts a secondary velocity profile with a similar shape as shown by the DNS data, but the
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peak is overpredicted by the NWRS model and its location is shifted toward the corner. The
distributions of normal stress difference (;5 - 17) along the wall bisector are shown in Fig. 5.17.
Compared with the DNS data, the NNWRS model gives a very good prediction of the normal
stress difference, whereas the NWRS model much overestimates the difference near the walls.

Fig. 5.18 shows the development of streamwise vortices in the lower left quadrant of the

duct predicted by the NNWRS model for the high-Reynolds-number (Re p =250,000) case. The
comparisons of secondary flow patterns at locations x/ D, = 8, 40 and 84 indicate that the
streamwise vortices in the developing flow are initially generated near the corner; as flow develops

along the straight duct, they move away from the corner and spread out in the cross section until

the flow becomes fully developed. At x/ D, = 84, the NNWRS model predicts the vortex centers
are located at (y = 0.254, 2 =0.60a) and (y = 0.60q, z = 0.25a), which are further away from the
corner compared with those predicted by the same model for the low-Reynolds-number flow (cf.
Fig. 5.18c with Fig. 5.12). Fig. 5.19 plots the predicted and measured isotachs of the streamwise
mean velocity U normalized by U,. The model predictions at x/ D, = 8 (Fig. 5.19a), showing
that the isotachs are bent toward the corner and are flat along the walls, are in very good agreement

with the data. At x/ D, =40 and 84, the predicted isotach contours are less distorted compared

with the measured ones (Fig. 5.19b and 5.19c¢).

The distributions of normalized wall shear stress 7, /T, at three streamwise locations
x/ Dy = 8, 40, and 84 are shown in Fig. 5.20. Unlike the low-Reynolds-number case, the
NWRS and NNWRS models give almost the same predictions of wall shear stress at all three
locations for the high-Reynolds-number case (cf. Fig. 5.20 with Fig. 5.14). The predictions
agree well with the measurements at x / D, = 84, although they are slightly overpredicted near the
wall bisector. The rather flat predicted wall shear stress profiles result from the almost parallel
distribution of isotach contours near the wall predicted by the models (Fig. 5.19).

The variation of predicted centerline mean velocity in the streamwise direction is plotted in
Fig. 5.21 and compared with the measurements. According to the experimental data, the mean

velocity along the centerline first increases to the peak value, and then decreases and levels off to
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an asymptotic value in the fully developed region. Both model results agree very well with the data

in the developing region. In the shear interaction region near x / D, = 40, the NWRS model gives
better predictions of U, than the NNWRS model does. The NNWRS model predicts a shorter

developing region and a lower peak value of U,. As flow approaches to the fully developed state,

the centerline velocity is also predicted well by the NWRS model, whereas underpredicted by the

NNWRS model slightly. Fig. 5.22 shows the comparisons between the predicted and measured

streamwise mean velocity U normalized by the bulk mean velocity U, along the wall and corner
bisector at locations x / D, = 8, 40 and 84. The predictions given by both models are identical and
in very good agreement with the data along both wall and corner bisector at all three locations.
Comparisons between predicted and measured secondary flow velocity profiles along the
wall and corner bisector at the same locations are shown in Fig. 5.23. Unlike the low-Reynolds-
number case, both models give almost identical predictions of the secondary mean velocity for the

high-Reynolds-number case (cf. Fig. 5.23 with Fig. 5.16). The secondary mean velocity is

underpredicted by the models along the wall bisector at x/ D, = 40 and 84. Along the corner
bisector, the model-data agreement is good at x / D;, = 40, but both models still underestimate V at
x/ Dy = 84. The underestimation of V in the fully developed region is also observed when the
secondary flow velocity is normalized by the local friction velocity u,, instead of the bulk velocity
U, (Fig. 5.24).

The comparisons between predicted and measured turbulent stress and kinetic energy
distributions along the wall and corner bisector at three streamwise locations are shown in Figs.
5.25-5.29. The NNWRS model predicts slightly higher turbulent stresses and kinetic energy than
the NWRS model. Predicted turbulent stresses and kinetic energy along the wall bisector are in

pretty good agreement with the experimental data. Along the corner bisector, the predictions of

turbulent stresses and Kinetic energy are generally overestimated. At x/ D, = 84, data and model
comparisons are also made for the normal stress difference (w2 - vz) at locations z/a = 0.1, 0.6

and 1.0. Difference in the predictions given by the NWRS and NNWRS models is quite large in

the inner layer, but diminishes away from the wall (y =0). Compared with experimental data of
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Eppich (1982), the normal stress difference is underestimated by the models in the near-wall
region.
5.4 Concluding Remarks

In this section, the wall-independent NNWRS model has been applied to two turbulent flows
with complex geometry: two-dimensional flow over a backward-facing step and three-dimensional
flow in a straight square duct. The performance of the NNWRS model is shown to be as good as
the wall-dependent NWRS model. The predictions of mean and turbulence flow fields in
backward-facing step flow agree well with the DNS and experimental data. The NNWRS model is
able to reproduce complex flow phenomena induced by the presence of the step, such as flow
recirculation, reattachment, and boundary-layer redevelopment to fully developed state. The
comparison of skin friction coefficient predicted by the two models indicates that the overshooting
of the skin friction coefficient after the reattachment point prevalent in those near-wall Reynolds
models using wall normals (including the NWRS model) is not caused by the wall normals
adopted in the models. Further investigation is needed to find out the root cause for this
overshooting behavior in Reynolds stress modeling. The NNWRS model is also shown to be able
to capture the secondary motion induced by turbulence for low- and high-Reynolds-number flow
in a square duct. It predicts that the vortex centers are closer to the corner in the low-Reynolds-
number flow than in high-Reynolds number flow, which agrees with the finding of Huser and
Biringen (1993). In high-Reynolds-number flow, both models give about the same predictions of
the secondary flow velocity, whereas in low-Reynolds-number flow, the NWRS model predicts
stronger secondary flow velocity along the wall and corner bisector compared with the NNWRS
model. The larger difference between the model predictions for low-Reynolds-number flow seems
to support the findings of Gavrilakis (1992) that viscous effects are more important in a low-

Reynolds-number square duct flow.
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Line of symmet

Fig. 5.1 Sketch of plane backward-facing step flow and coordinate system.
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Fig. 5.6 Comparison between predicted and measured mean velocity profiles U™ in wall

coordinate y* at different downstream locations after the the reattachment point: (a) x/ h =10,
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Fig. 5.14 Comparison between predicted and DNS wall shear stress for fully developed square
duct flow at Re =10,320.

Fig. 5.15 Comparison between predicted and DNS axial mean velocity along wall bisector for for
fully developed square duct flow at Re =10,320.
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Fig. 5.16 Comparison between predicted and DNS secondary flow velocity along: (a) wall
bisector, and (b) corner bisector for fully developed square duct flow at Re =10,320.
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for fully developed square duct flow at Re =10,320.
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Fig. 5.18 Predicted secondary flow by the NNWRS model at:
(a) x/D, =8, (b) x/D, =40 and (c) x/D, = 84.
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Fig. 5.22 Comparison between predicted and measured axial mean velocity along: (a) wall
bisector, and (b) comer bisector for developing square duct flow at Re =250,000.
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Fig. 5.23 Comparison between predicted and measured secondary flow velocity along: (a) wall
bisector, and (b) corner bisector for developing square duct flow at Re = 250,000.
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Fig. 5.24 Comparison between predicted and measured secondary flow normalized by local
friction velocity along wall bisector for developing square duct flow at Re =250,000.
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Fig. 5.25 Comparison between predicted and measured normal stress in axial direction along: (a)
wall bisector, and (b) corner bisector for developing square duct flow at Re =250,000.
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Fig. 5.26 Comparison between predicted and measured normal stress in vertical direction along:
(a) wall bisector, and (b) corner bisector for developing square duct flow at Re =250,000.
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Fig. 5.27 Comparison between predicted and measured normal stress in transverse direction along
wall bisector for developing square duct flow at Re = 250,000.
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Fig. 5.28 Comparison between predicted and measured turbulent kinetic energy along: (a) wall
bisector, and (b) corner bisector for developing square duct flow at Re = 250,000.
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Fig. 5.29 Comparison between predicted and measured turbulent shear stress along: (a) wall
bisector, and (b) comner bisector for developing square duct flow at Re = 250,000.
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locations for developing square duct flow at Re =250,000.
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6. CONCLUSIONS

In this study, a new near-wall Reynolds stress model (NNWRS) without wall normals is
developed based on the pressure-strain model of Speziale et al. (1991). With the aid of near-wall
asymptotic analysis and the results of direct numerical simulation, wall-independent near-wall
modifications are incorporated into the expression for the pressure-strain correlation, into the
relation for the dissipation rate tensor, and into the modeled dissipation rate equation. A damping
function is introduced to ensure that the near-wall modifications will not affect the flow field in the
region far away from the walls. The asymptotically correct NNWRS model is the first near-wall
Reynolds stress model without wall normals. For comparison, the formulation of the recent near-
wall Reynolds stress model (NWRS) with wall normals developed by So et al. (1994a) is also
presented. According to the asymptotic analysis, the NNWRS model gives more accurate
predictions of those Reynolds stress components uncorrelated with the wall normal direction than
the NWRS model, whereas the NWRS model gives more accurate predictions of those
components correlated with the wall normal direction. With no wall-dependent variables used in
the model and only one damping function, the NNWRS model is more general and flexible for
turbulent wall-bounded flows than the wall-dependent NWRS model, which requires two damping
functions for different Reynolds number range.

The new model is applied to a wide variety of flows to verify its applicability. These flows
range from relatively simple flows, such as fully developed channel/pipe flow, Couette flow, and
boundary-layer flow with zero pressure gradient, to complex flows with swirl and rotation, such
as swirling pipe flow, axially rotating pipe flow, and channel flow with spanwise rotation. The
advantages of using the new proposed model for flows with complex geometry are demonstrated
by flow over a backward-facing step and flow in a square duct. The performance of the model in
different type of flows is summarized as follows:

(1) The NNWRS model predicts reasonably well the mean and turbulent flow fields of simple

internal and external flows over a wide range of Reynolds numbers. The model is able to
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(2)

(3)

capture the log-law region with a correct von Karman constant. Reynolds number effects on
the mean flow and second-order statistics are reproduced well by the model. The main
deficiency in the model is that it predicts less degree of turbulence anisotropy in the near-wall
region compared with the NWRS model.

In flows with swirl and rotation, the flow complexity is caused by the streamline curvature,
centrifugal force, and Coriolis force. The performance of the NNWRS model seems to
depend on the relative importance of these factors. In swirling pipe flow, the NNWRS
model gives reasonable predictions for flow in no reverse flow region, whereas the model
predicts a much smaller reverse flow region than that observed in the experiment. In
developing flow along a pipe rotating about its axis, the NNWRS model is able to capture the
flow pattern subject to both destabilizing effect resulting from the mean circumferential shear
strain and stabilizing effect due to the centrifugal force. In the fully developed channel flow
with spanwise rotation, at low rotation rate, the model predictions agree with the data. But,
as the rotation rate increases, the model underestimates the Coriolis effect. The NWRS
model behaves similarly as the NNWRS model in these flows.

The advantages of using the NNWRS model for flows with complex geometry become more
evident when it is applied to two-dimensional flow over a backward-facing step and three-
dimensional flow in a straight square duct. The overall performance of the NNWRS model
is found to be as good as the wall-dependent NWRS model. The model predictions of mean
and turbulence flow fields in backward-facing step flow agree well with the experimental and
DNS data. The NNWRS model is able to reproduce complex flow phenomena induced by
the presence of the step, such as flow recirculation, reattachment, and boundary-layer
redevelopment to a fully developed state. The comparison between the predictions given by
the two models indicates that the overshooting of skin friction coefficient prevalent in near-
wall Reynolds stress models is not caused by the use of wall normals. The NNWRS model
is also able to capture the secondary motion induced by turbulence in low- and high-

Reynolds-number square duct flow. The difference in the model predictions of low- and
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high-Reynolds-number square duct flow seems to agree with the DNS findings by Gavrilakis

(1992) and Huser and Biringen (1993).

Overall, the predictions given by the NNWRS model agree reasonably well with available
data from experiments, direct numerical simulation, or large eddy simulation for a wide range of
Reynolds numbers, swirl numbers, and rotation numbers. Various complicated flow phenomena
are essentially captured by the model. Moreover, the model performance is very close to that of the
wall-dependent NWRS model. With further refinement, the wall-independent NNWRS model is
expected to replace existing wall-dependent near-wall Reynolds stress models for wall-bounded
turbulent flows soon. Modifications of the formulation of the near-wall corrections so that the
NNWRS model can give more accurate predictions of those Reynolds stress components
correlated with the wall normal direction are expected to improve the performance of the model

significantly, which will be pursued in the near future.
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APPENDIX A

The Equations for the High-Reynolds-Number Models

Speziale et al.'s (1991) high-Reynolds-number pressure-strain correlation formula was

published in the following form

.= 1 .
HU = —-(Cle + CI P)b’] + Cze(b[kbkj - §H6U) + (C3 - C3 HI/Z)kS[j

(A-1)
2
The mean vorticity W; is defined as
Wij = wtj + eminm > (A-2)

where @; is the anti-symmetric mean velocity gradient tensor, €nji 18 the permutation tensor and

€, is the rotation rate vector of the non-inertial frame relative to an inertial frame. The definitions

of the other terms in (A-1) are

1 — 2

bij = '2—k(uiuj' _§k6l) B (A'3a)

=50, (A-3b)
1 JU. an

L s N A-3

=7 ) (A39

—JdU; — U,

Pij=—|iuiuk'§‘x‘ki‘+ujuk‘5x'k— , (A_3d)

13=2P,-i y (A_3e)
1,0U; dU;

o= (e — L s A-3f)
a)y 2(3)(] axi ) (

and the coefficients are C; =3.4, C, =4.2, (5=0.8, C; =125, C5=0.4, Cl* =18, C; =1.3.

Comparing (A-1) with the LRR model, which can be written as,
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2 - 2 -
;"R = -Cieb, — oy (P - 5P(S,.j) - Bu(D; - gP<‘>}.j)— 27,kS; (A-4)

it can be noted that the first two terms in (A-1) are the return part and its nonlinear modification,
respectively. The mean vorticity caused by rotation is separated from the anti-symmetric mean

velocity gradient tensor and excluded from the transformation. Therefore, the terms need to be

transformed are

. 2
M°C = (C3 = G IS, + C4k(bik8jk + by S — 51),,,,,5,,,,15,-1-) s

+ C5k(bika)jk + bjka),-k) .

The SSG model (A-1) was developed for plane homogenous turbulence by Speziale et al.

(1991). Under this assumption the symmetric and anti-symmetric tensors 5,-] and c?),-j can be

written as
0S5 O 0 w O
§l.j: SO0 0f;dy=|-w0 O |, (A-6)
00 0 0 00

and the anisotropy tensor is of the form

b]l bl2 0
by=|bp by 0| (A7)
0 0 by
Accordingly,
2
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0S 0 5
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or

Cy Cp O
SS
Hij = Cpp Gy O
0 0 Cy

where

C” =(§C4+2C5)b12k5 s

Cpy = [(C3 — G3T1Y2)+ Cy by + byg) + Cs(by — b”)]kS ’

C, —2C5]b,2ks ,

Cp= (
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Wb

(A-8)

(A-9a)

(A-9b)

(A-9c)

(A-9d)

To determine the coefficients in the final form (A-9), consider a thin shear layer flow where

_1ou
SEL

S=w

On substitution of (A-10) and the anisotropy tensor definition (A-3a), (A-9) becomes

1/1 — U
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Similarly, last three terms in (A-4) can be written in the form

12
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By comparing (A-11) with (A-13), the following equations are obtained
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Only three of the above equations are independent and undetermined coefficients, a;, B, and y,,

are solved from them, which are

G +C C,-C C, 1 *
a = 44 2 ;ﬂlz 44 : ; 71:?4—5(C3—C3H1/2)' (A-15)

Substituting C; =0.8, C4 =1.25, C5=0.4, C; = 1.3 into (A-15), we have
— . — — C_; 1/2
o =0.4125 ; B, =0.2125 and 7y, =0.01667 + 5 n’s . (A-16)

Therefore, the transformed SSG model is

.z 1
Hg‘SG = —(Clg + Cl P)bl] + Cze(bikbkj - §H5U) + C5Qm(bikemkj + bjkemki)k
2 - 2 - Cx
- ay(P; —gpa,.j)—ﬁl(o,j —513(5,-1.)—2(;/1 +73H“2)k5i. (A-17)

with a; =0.4125; B, =0.2125 and 7, =0.01667 and C, =3.4, C, =4.2, Cs=0.4, C, =18.
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APPENDIX B

SUMMARY OF MODEL EQUATIONS

B.1 NNWRS Model
The Reynolds-stress transport equation for the NNWRS model can be written as
duu;, 9 duu,; U, ____ AU,
U L= v—2L [+ DI + uu —uju
ox, ka( axk} = "ak P ]

- 2Qk(ujume,-km + uiumejkm) + HU — &

iy -

where the modeled terms are

r_ 0| . k[—oum — Juy — Ju;
D‘J _ax IVC [ U; ,—5;1—+uju, x{‘ +uu s

I =—(Ge+ C;i))bij + Coe(by by —— )+ Cs 0 (bixemi + bjemii )k

2 - 2 Cs
_al(Pij —gpsij)—ﬁl(Dij _EPEU)_Z(Yl +73H1/2)ks,'j

+fw,lng

* = 1 * 2 = x

2 Wy er

£ —
W—
Eij —-]-c—uiuj s

€= (v (v

e 11 9 ouu ws; 9 Ok
2 axk axk k (9xk axk ’

The dissipation rate equation is given by

de d [ oe - g2
U = C C P—C —
k 8xk 3xk [v ka] ax ( “ j 9 )+ ey k €2f£ k
+C 30—[8\/_] .
axk
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(B-1)

(B-2)

(B-3a)

(B-3b)

(B-4a)

(B-4b)

(B-4¢)

(B-5)



B.2 NWRS Model

The Reynolds-stress transport equation for the NWRS model can be written as

aﬂ,u_j 0 8uu T U, —— Ju.
= v +Dj +[-uu —L
“ox,  ox | ox [t ox, % ox,
- 2Qk (ujumeikm +uiumej'k,n)k+ Hl] - EU .
The modeled terms are given by
0 k ujuy — Jugu; — Juu;
Dl = C,—| u; —L " tuu +uu L1
Y axk[ (“‘”’ o, M T T Ty
I, = —(Cie + G PYby + Cre(byby; — = T18;) + C5Q, (Bl + byl Ik
2 - C;
- o (Py ——Pa,.j)—ﬁ,(D,-j -ZPs)-2n + 23 I1"2)ks;
+ fu I +H”

where

Y =(Ce+C Pb,; -

I1° =_l i
Y 3| ox,

v

2
elj :56,,8(1_fw,])+fw,1£l;v ’

1 * 2 fod *
CZE(bikbkj —Snal]) + (PU —§P5U)+2}/ kSU y

Ity nn.+-a— vau_ju—k n.n +l—§—— vaﬁ nnnn,
axl £ 8x, axl . 3 ax'" ax"‘ e

+ U; uknkn +u uknkn + nn ukulnknl

<
z:-lm

1+ 3uku1nkn1 /2k

The dissipation rate equation is given by

de _ d

o€

U
k axk 9xk

where

&

axk

= EE
j ax (C lja )+C£lkP—CE2_k°+g ’
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(B-6)

(B-7)

(B-8a)

(B-8b)

(B-8c¢)

(B-9a)

(B-9b)

(B-10a)



-2 -
€ ~ £ EE
=foal-LEP+ME—-NE,
g fw,Z( k k k]

E=¢e-2vk/y

g=e-20(Vk/ o) .

Other tensors and vectors appearing in the NWRS and NNWRS models are given by

by = ——(agl; - 2kS;)

v 2k 3
l_[:bmnbmn s

1 oU; dU;
S..:..__’.J,._J_ ,
Y 2(313] axi)

U, — U,

Dij=—|:uiuk—a—;c—j—+ujuk—97i} ,
7=(0,10) ,

0, if any two of i, j, k are the same
ejx =41 ifijkis an even permutation of 123
-1, if ijk is an odd permutation of 123
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(B-10b)

(B-10c)

(B-10d)

(B-11a)

(B-11b)

(B-11c¢)

(b-11d)

(B-11e)

(B-11f)

(B-11h)

(B-111)



B.3 Model Constants and Damping Functions

The model constants and damping functions are listed in the table below.

Constants/Functions NNWRS NWRS
C, 3.4 3.4
C, 4.2 4.2
c 1.8 1.8
c 1.3 1.3
, 0.4125 0.4125
B, 0.2125 0.2125
7 0.01667 0.01667
o -0.32 -0.29
¥ 0.072 0.065
C, 0.11 0.11

C., 1.5 1.5
C., 1.9 1.83
C., 2.95
Cs 0.4 0.4
C, 0.12 0.12
L 2.25
M 0.5
N 0.57
fe 1= (2/9)e™(Re/®)
fui o~ (Rei150)" o AR /60)’, o~ (Rei/200)"
fo2 o-(Re/40)’
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where

k2

Re,=— , (B-12)
VE

A=1-(9/2)(b;b; —2b;b,b,) . (B-13)
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APPENDIX C
SUMMARY OF GOVERNING EQUATIONS

C.1 Fully-Developed Channel Flows

C.1.1 Mean flow equation

Ut w1

0 -~ +
dy*"  Jdy"  Re,

(C-1)

C.1.2 NNWRS modeled equations

dy € 3y e Ty oy
+ 4 * 2 * —_ aU+
-C,¢e (I_fwl)bll+{§(al_fwla )—Eﬁl'*'cl(]_fw/)bu}uv gyT
1 2 =+
+C28+(1—fw1)(b112+b]22—gn\)_g(l—fwl)e+_fwl'i—+u2
i oo | u o (o
—E (9y+ 8y+ - P 9y+ 8y+ ’ (C-2)
0=—2_|[1+3¢, 77" sl ~C et (1= fo1)b
ay+ S€+ &y+ 1 wl Y22
2 * 4 * -+ 8U+
_ 3(oe,-fw,oz )—Eﬂ,—C,(I—fw,)bzz uv e
| 2 t—+
+C2£+(1—fwl)(b222+b122“gn)_g(l_fwl)8+—fwl%v2
REIEEAREEERE 3
2 (9}’+ ay+ k+ 8y+ 3y+ ’
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0=
ay*

[[Hcg )9(;; ] C e (1-£,,)bss

2 " 2 . U*
_{E(a,—fw,a)+§ﬁ, Ci(1-f.,)b jj}uv S

+ 1 +'—+
+C € (1—fwl)(b33 "gn)——( - fu)e" fw]
1o [aw? ] W& o [
_5 &y+ 3y+ - ©t 8y+ oy ’ (C-4)
d k+_ duv kt —+ dv =5+ U"
= 1+2C + ol -
an[[+ Ser” j&y Ser af]v 3y
. + U —+dU"
-C,¢e (I_fwl)b12+( fwla) —9—T+ﬂlu2 ay"
—. 9U* . C .U
(1 fwl)blzuv T’ (YI—fwly + 23 Hllz)k ay
+Cy " (1= fo )(bri by + biaboa) = fun ; w”
— , C-5
1 9 [ow’ ) w' 9 (k" (>
2 3y+ ay+ k+ ay+ ay+
de et —soU" et -
O:ay [(I-FC g jay+] CEIFuv+-a—;T—CEZk_+P+
a«/k—+
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C.1.3 NWRS modeled equations

L -3t +_+ —_ . +
0= 1+, 57 |2 420, i 20| _ i Y
€ dy € dy ay*

+ 4 * 2 » _— a *
—-C, e (]_fwl)bll +{§((X, - fui )_gﬁ/ + Cl(l—fwl)bll}uv %
y

+C,e"(1- fw,)(b,,2 +b,,° —én)

—+

+_2 .
_fwl————’:‘_+—£ _—(1~fwl)€

— , (C-7)
K+ /2 3
J [(2 k' =)oV .
0=ay+ [(3+3CSETV2 jaf ]—Cle (1=1.1)b2
2 » 4 * -+ 8U+
_{E(al —fui )_‘3‘[31"6‘1(1_fw1)b22}uv 3—y+
N 2, 2 1
+C, € (I_fw)(bzz +b, "}'H)
v . 2 .
By e — T E ) E (C-8)
k+3vis2 3
J k"= \aw? .
0=8y+ [(1*'(:3?"2 ) 3y ]_Cle (I—fwl)b.?.?
2 o 2 . —. dU”
"{}(a/_fwa )+§ﬁl—cl(1_fwl)b33}uv a_y+
+ » 1
+Ce (- fw,)(b33 ‘E”)
w? 2 .
—f——=r—€~=Z(I-f, )" . (C-9)
ket /2 3
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3 [(2 duy k— V) 59Ut
y20,5 X S
(9y [( e’ )8y " sgr 8y+] Y ay’

+ U —+dU"
—C £ (] fwl)b12+(a fwla ) 2 +ﬁlu2 a_(j_

8 * dy*
+8U+ N C +aU+
(1 fwl)bjzuv a—y* (}/l—fw]»y + 23 Hl/ij ay

—_—+

+Cz 8+(1‘ fw1)(b11b1z + bIZ bzz)_ szl_iv——ﬁ_"‘«'+

k*+3v: /2
0= ‘{((1 c—- ]‘98 ) ¢, w9 ¢t
dy ay" k dy k
+<9U* gl Ee*
+fw2( v +MF—N e ]

y

C.1.4 Boundary conditions

At y* =0 (wall)

U'=0, k*=0, &° =0, v} =0, w? =0, w' =0

“ {57

At y* = Re_ (centerline)

. . —5+ =+ —5+
8U= ’3k= ’9u+=0’ 3v+=0, 3w+ —0. T =0
ay” ay* dy dy dy

de*

=0
ay"
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(C-1D)

(C-12)

(C-13)



C.2 Fully-Developed Pipe Flow

C.2.1 Mean flow equation

o=t ‘9+(r+3U+J—1 d (i)+ 2

rtar ort ) rar Re

T

C.2.2 NNWRS modeled equations

+ -2t -o-_+ Tt —_ +
[r+(1+Csk ? )au +2r+CSZ€7uv al]—2uv ad
E

1 Jd
0= —
e’ art ar’ ar’

rtor’

dU"

. 4 o 2 . —
_CIE (I—fw,)b,,+{—§(a,—fw1a )—;ﬂ,+C,(1—fw,)b,,}uv —5;:-

¥ 2,52 1 2 + et
+Cy " (1= for)| bi” + b1z _EH ‘g(l“fwl)g _waZT”

=ty T2t +
11 r+8u w1 d r+(9k
2| rt ort art Kt rtort ar* ’

2 k* =+ dw 4 kt —+{—=+ —S+
_ C 2 _ C > 2 ( 2 2 )
r+ S £+ v ar+ +2 8 £+ w 4 w
. 2 o 4 . — U"
-C,¢ (1"' fwl)bZZ _{g(a/ = fuiO )—Eﬂl - CI(I_ fwl)bZZ}uv F
1 2 =+

£
+C, {-:’“(l—fm)(bzz2 +byy° _EH)—E(I —fu)€" —fw1k—+"2

=+ o :
__1_ _1__ 8 r+ av _ 1% i 9 )"+ ak
2 rt ort ar* kKt rtoort ar* ’

252

(C-14)

(C-15)

(C-16)



r 8+ ar l"+ 3r+ £

+ + 2 * 2 * _+8U+
—C18 (I_fwl)b33—{§(al_fw1a )+§ﬁl—cl(1—fw1)b33}uv 5';1—

+

+C2£+(1‘fw1)(b332_lnj—g(l‘fwl) fwle_w?'+

3 3 k*
—+ —=+
11 3| sowt | w1 9 [ okt
A [r o"r+J R 3r+(r P , (C-17)

1 d =+ duv' k —+ ov? 2uv’
0=— 1 1+2Cs —v? +rtC -=
J [r ( Se ] ar* Set ar* ] 3 42

Ikt —dw’ 2 kT ——r 5+ QU

—FCS-G—;MV —a—"T*—jCS E+uv w V ar —C & (] fwl)
w5+ dU* —+ U +3U+
+(a1 fwla) ’ 9 +Bu a—r' (1 fwl) 12U 0-)r+
. G LouUt
—(Yz_fwﬂ’ +73H”2jk 3 + +C € (I—fwl)(bllblz+b12b22)
et—r 1|1 [ ,om") w1 3 okt
- — -——|— - — , C-18
S k* w 2|:r+ 8r+(r ort kt rtoort ’ ort ( )
1 3 kt—=\)de et —i U" et -
O:Far+(r+(l+C€8—+v )—3_?] CelFuv F—CEZFPJ'-
+
+Ce3— [8(;/—{} (C-19)
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C.2.3 NWRS modeled equations

0=~ a[ [1+CS—+ )a“ +2r csfruv*gwj 2w 2Y
r

’ ar’ € ar’ ar’

r

+ 4 * s JU”
—Cle (]_fWI)bll+{.§(al—fWIa) ﬁl+c (1 fwl) ll}uv ar*'
+ 2 , 1
+Ce (- fw,)(b,, b, 'E”J
— et
~fultt ——=—-I-f)e"
T et /2 3( e
_1d v 2 (5 =), 22V
+3C,— - ( 2t _ 7 )+_
r ar [( SE* )9?) r+2 v w 3 r+2
2 koWt 4k 5 e
“FCSFVZ 3 —r—+2-Cs—+ 2 (Vz —W2 )
* 2 * 4 —:dU"
—C e (I_fwl)bzl.’_{}(al—fw]a )—3ﬁ (1 fw]) 22} uv F

+ 1
+C, € (I—fw,)(b222 +b,,’ -;[I)

+

af 7 — 2 p)e
k3 /2 3( 2%

14 K=+ )ow? 2 [~+ —+\ 22
0= I+ Cy—V* +————( 2—w? )—-—
r ar [ [ s * ] ar"' ] r+2 v w 3r+2

R oo i i
L Gl G Lo G G
r £ ar * r r £
. . 2 o, 2 + U™
-C€ (I—fwl)bj.?_{}(al_fwla )+‘3‘ﬂ1“ (1= 1) 33}uv 5
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uy

or'

1 _If:—+ 8F+ 2 k+ —+ T3+ T3t (9[]+
e’ or

—+dU” —+ dU”

+a, = fo,0 v = +Bu ~ +C (1= f,)buv”

. C; LoU” .
_[yl_fwly +"‘“nm]k "—“‘+C2£ (I—fw,)(b,,b,2+b,2b22)

2 ay*

+

b

—2f, 0 ————
k*+3v: /2

0=12 (f(uq’%?jag j—c A

rrart £

C.2.4 Boundary conditions

At r* = Re, (wall)

—5+ —

Ut=0, k*=0, & =0,v2 =0, w?> =0, w" =0,

e =2 lﬂ—- 2
B(Re,— r*)

At r" =0 (centerline)

255

+ -+ 4-_+ =2t
19 (r+(2+ [ )auv e e 2

.
-—C—w w' —v —=-C¢

€2

—_+
2 uy

e’ ar’ 3 r+2

é-+£+

k+

(I-fwl)blz

U
ar’

(C-22)

(C-23)

(C-24)

(C-25)



ouU* ok* out v owr —.
=0, =0, =0, =0, Z—=0, w" =0,
o ar or ar ar w
de’
=0 . .
art (C-26)
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C.3 Fully-Developed Couette Flow
C.3.1 Mean flow equation

09U duw’”

3y B (C-27)

C.3.2 NNWRS modeled equations

The equations are the same as those given for the fully-developed channel flow.

C.3.3 NWRS modeled equations

The equations are the same as those given for the fully-developed channel flow.
C.3.4 Boundary conditions
At y" =0 (fixed wall)

Ut=0, k=0, i> =0, v’ =0, w2 =0, w =0

2
e = 2[ ?}f) . (C-28)

At y© =2Re, (moving wall)

—+ -+ —_—+ —_
Ut =Upoeiiea» & =0, 68 =0,V =0, w* =0, ww" =0

e = (8@] . (C-29)
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C.4 Incompressible Boundary-Layer Flow

C.4.1 Mean flow equations

ox ay (&30
U3U+V8U:_3P+_2_ vaU duv C-30b
dx dy dy dyl| dy 8)’ (&30
C.4.2 NNWRS modeled equations
Ju? 02 9 du? —duv — U
U—+V—=— — —+2 —
I 2y ay[(v+C58v ] 2y + CS 07y] 2u vay
4 * 2 * (9U
-G 8(1—fw1)b11+{§(0‘1 = fume )_Eﬂl"'cl(l fwl)bll}uva_y
+Ce(1- f 1)(b112+b122‘1n)“2“(1‘f e-f —i?
w 3 3 w wlk
1 of, 9 _zi(va"] (C-31)
21y oy | kH\ )|’
: v 9 9v?
U$+Va—y_—a—)—)((v+3cs-£v ) ay ) C] E(l—fwl)b22
2 * 4 * é’U
—{5(0‘1 = fu® )‘5131 -G a- fwn)bzz}“"a_y
2 2 1 2 €3
+C28(1—fwl)(b22 +by, "EH)_E(I_fwl) fwlz
1o a?) v af. ok
_Ljaf vt v , C-32
253 5
ow?: _awr 9 k=) ow?
U a“; +V———8M; :—a—y[(U'FC_ggvz) ay J_C]E(l—'fwl)b:ﬁ
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2 "\, 2 . U
—{E(al —fwla )+§ﬁl - Cl (1- fwl)b33}uv—8—)—)-

+C2€(1‘fw1)(b33 —ln)‘—( = fu)E fwl%

3
AEIEN N
duv duv 0 oy k—dv
U+ V—r=—- 2C = +C
dx dy ay[( + SE )ay + 5 uv 8y]
23U 29U 28U
Ny gl_fw by, + fwa —_—
Jy ( 1)bi2 ( 1 ) By u 5
' w2V <. G U
+C‘(l"fW‘)b12”v”a_y“(71‘fwﬂ’ + 23 Hl/z] =
£—
+Cy (1= fo1 )by bra +b]2b22)_fwl7c_uv
1| d( Ju) uvd( ok
BENEIN T ’ (C-34)
2[%( 5‘y) k ay( @ﬂ
85 de 0 de e—oU € -
g€ yO9E _ g k c E=3U . &
U ady ay(( +C g ]ay] Elkuv 3y Cesz
+Ce30— (8\/_) (C-35)
dy

C.4.3 NWRS modeled equations

8u 8u J du —duy — U
- —_—= +C 2C Iy ——
U555 ay(( S "jay+ Se By] “ 3y

4 “_2 . U
—Cxe(l—fwl)bn*’{g(a]—fw105)—gﬁﬁC]( le)b“}uvjy—

1
+Cye(1- £, )by + b —-3-11)
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W2 2
~f—=—-Z(1= f)E (C-36)
k+3vi/2 3

¢9v av adl(2 av
g9y wer 9 V+3C 1—
v dx dy 8y[( S ) &y] Cie ( le)b22

2 « 4 * —JU
‘{5(0‘1 - fwma )—gﬁl -G (1- fwl)bzz}“v‘a—;

1
+Cye(1= f,, (b + b — gn)

—4f 2 e-2(1-f)e (C-37)
et/ 3 TMUT
ow?: _ow? 9 k=) ow?
5’»‘; + ——an; :5)—)-[(1)+CSE—V2) a“;] Cl(l fwl)b33
—{—z—(al—f @)+ 2p - cla-f 1)b33};;8_U
3 i 3 " dy
1
+QaLameé—§H)
~ful —VZ e—g(l—fwl) : (C-38)
k+3v:/2 3
8uv duv 0 (2 )8uv k— 3;5
vk 2C S+ Cs v =
U575, 3y[ et oy TS ay
—- JU 8U
_V2Q—C18(1—fwl)b12 +( = fwm@ )y ) v +ﬁ1 u? 3y
* —aU * C aU
+C1(1—fw1)b12“"'a—;—(?’1-fwl?’ + 23 HMJ EM
uv
+Coe(1= f,)(By by + biobyy) = 2 fo) ———E (C-39)
2€(1= fu1)(Bribig +bipby) = 2f I
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C.5 Levy-Lees Transformation for Boundary-Layer Flows
The body-oriented physical coordinates (x,y) and transformed coordinates (&,7) are related
by,

Y pi,(r,+y)dy
dé :peueueru}dx and dn = e—‘\u/‘__ ’ (C-41)
28

where r, is the body radius, e stands for the freestream value and j=0,/ for plane and

axisymmetric flow, respectively. Equivalent to these expressions are the following:

[ ! par.tp ),
E(x)=|p.ap,r’de and n(x,y) ="t [-_—jt’dy , (C-42)
! v 28 { p

4

where t =r/r, is the transverse curvature. By using the chain-rule of calculus we can relate the

derivatives of the two coordinate systems:

2) () +(2)(2 _
(ax)y_peue‘uzro [ag)n_*- ax , ar’ : ! (C 433.)

9 _pan’(p ( 3 ) _
(@]x J2& (ﬁe] o), (C-43b)

The dependent variables are transformed according to the following relations:

Z 2 J S ]
FEm==— | V(g,n)=___~_§_z_j Han) et |
u, p.ulLLr, os 25
k - ) n .
K(é’ 77)=a—2 W(é’ TI): 52(0 , g(é,n):zil_f_ , (C-44)

’

where the expression for V is extracted from the continuity equation assuming a stream-function

exists. The equations governing the mean flow after the transformation are then given by,

=dF JV

2WEZ=+Z=+F=0 |, C-45
§8§+8n+ ( )
2§F8§+V977 an{t (HLT)&TJH;( ) (C-46)

For the k — € model the equations are transformed to,
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_ 9K . 0K d|. I, \ oK oF Y’
2EFSo +vI= - | L 1+ 2BFK - 1%
¢ + [r ( + jan} B t Lur(gn]

0 dn In o,
(e+£)
pAFT ’
= .0E 0E d | U, \0E =
26F—+V - 1+ 2L |=—= [+ 228 - DF
& 9§+ 5n an{t ( +o€]8n}+ (2B - DFE

2 2
elflg 2ir —[25] 4+ —e2l2 ezfz .8__2=0 ,

an ﬁeﬁeA(f] K
where,
A28 28p. K’ Ay
£ =225 H=Cf, 225 R S rwwvr
o= Toal o Hr = Culy a,0° L(1+©Y E UL pafr,

The dimensionless parameters introduced are given by,

£ _ é S — ae A — &
5 pNU,,,Ll,AZj+I ’ u, UN ' pe pw ’
o - L)_ ] = ‘t_l_‘_ = ur
r() A * :ue #r 4 (p pwaA ’
W . £
= 27 T AT
LA P, A

The quantities,

oI L

e

I
sl |‘O|

£ and B
U,

2¢ di
i

(C-47)

(C-48)

(C-49)

(C-50a)

(C-50b)

(C-50¢)

(C-5D)

are the dimensionless temperature, density/viscosity and pressure gradient terms, respectively.

The first two terms are introduced from the transformation and are zero and one, respectively, for

isothermal, incompressible flows. The last term in (C-51) vanishes for flows with zero pressure

gradient. The parameter A is a reference length and is set to ] with no loss in generality. Similar

transformations are also applied to the modeled transport equations of the near-wall Reynolds-

stress models.
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